REFERENCES
1. D’Oria R, Schipani R, Leonardini A, et al. The role of oxidative stress in cardiac disease: from physiological response to injury factor. Oxid Med Cell Longev 2020;2020:5732956.
2. Puente BN, Kimura W, Muralidhar SA, et al. The oxygen-rich postnatal environment induces cardiomyocyte cell-cycle arrest through DNA damage response. Cell 2014;157:565-79.
3. Ali SR, Nguyen NUN, Menendez-Montes I, et al. Hypoxia-induced stabilization of HIF2A promotes cardiomyocyte proliferation by attenuating DNA damage. J Cardiovasc Aging 2024;4:11.
4. Singh BN, Yucel D, Garay BI, et al. Proliferation and maturation: Janus and the art of cardiac tissue engineering. Circ Res 2023;132:519-40.
6. Nakada Y, Canseco DC, Thet S, et al. Hypoxia induces heart regeneration in adult mice. Nature 2017;541:222-7.
7. Zong H, Espinosa JS, Su HH, Muzumdar MD, Luo L. Mosaic analysis with double markers in mice. Cell 2005;121:479-92.
8. Cardoso AC, Lam NT, Savla JJ, et al. Mitochondrial substrate utilization regulates cardiomyocyte cell-cycle progression. Nat Metab 2020;2:167-78.
9. Magadum A, Singh N, Kurian AA, et al. Pkm2 regulates cardiomyocyte cell cycle and promotes cardiac regeneration. Circulation 2020;141:1249-65.
10. Li X, Wu F, Günther S, et al. Inhibition of fatty acid oxidation enables heart regeneration in adult mice. Nature 2023;622:619-26.
11. Ang KL, Shenje LT, Reuter S, et al. Limitations of conventional approaches to identify myocyte nuclei in histologic sections of the heart. Am J Physiol Cell Physiol 2010;298:C1603-9.
12. Bergmann O, Bhardwaj RD, Bernard S, et al. Evidence for cardiomyocyte renewal in humans. Science 2009;324:98-102.