REFERENCES

1. Rahman S, Copeland WC. POLG-related disorders and their neurological manifestations. Nat Rev Neurol 2019;15:40-52.

2. Lewis W, Day BJ, Kohler JJ, et al. Decreased mtDNA, oxidative stress, cardiomyopathy, and death from transgenic cardiac targeted human mutant polymerase gamma. Lab Invest 2007;87:326-35.

3. Koczor CA, Torres RA, Fields E, et al. Transgenic mouse model with deficient mitochondrial polymerase exhibits reduced state IV respiration and enhanced cardiac fibrosis. Lab Invest 2013;93:151-8.

4. Trifunovic A, Wredenberg A, Falkenberg M, et al. Premature ageing in mice expressing defective mitochondrial DNA polymerase. Nature 2004;429:417-23.

5. Zhang D, Mott JL, Farrar P, et al. Mitochondrial DNA mutations activate the mitochondrial apoptotic pathway and cause dilated cardiomyopathy. Cardiovasc Res 2003;57:147-57.

6. Dai DF, Chen T, Wanagat J, et al. Age-dependent cardiomyopathy in mitochondrial mutator mice is attenuated by overexpression of catalase targeted to mitochondria. Aging Cell 2010;9:536-44.

7. Someya S, Kujoth GC, Kim MJ, et al. Effects of calorie restriction on the lifespan and healthspan of POLG mitochondrial mutator mice. PLoS One 2017;12:e0171159.

8. Golob MJ, Tian L, Wang Z, et al. Mitochondria DNA mutations cause sex-dependent development of hypertension and alterations in cardiovascular function. J Biomech 2015;48:405-12.

9. Woodall BP, Orogo AM, Najor RH, et al. Parkin does not prevent accelerated cardiac aging in mitochondrial DNA mutator mice. JCI Insight 2019;5:127713.

10. Gorr MW, Francois A, Marcho LM, et al. Molecular signature of cardiac remodeling associated with Polymerase Gamma mutation. Life Sci 2022;298:120469.

11. Williams SL, Huang J, Edwards YJ, et al. The mtDNA mutation spectrum of the progeroid Polg mutator mouse includes abundant control region multimers. Cell Metab 2010;12:675-82.

12. Melber A, Haynes CM. UPRmt regulation and output: a stress response mediated by mitochondrial-nuclear communication. Cell Res 2018;28:281-95.

13. Suárez-Rivero JM, Pastor-Maldonado CJ, Povea-Cabello S, et al. Activation of the mitochondrial unfolded protein response: a new therapeutic target? Biomedicines 2022;10:1611.

14. McLaughlin KL, Kew KA, McClung JM, Fisher-Wellman KH. Subcellular proteomics combined with bioenergetic phenotyping reveals protein biomarkers of respiratory insufficiency in the setting of proofreading-deficient mitochondrial polymerase. Sci Rep 2020;10:3603.

15. Kim D, Paggi JM, Park C, Bennett C, Salzberg SL. Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nat Biotechnol 2019;37:907-15.

16. Pertea M, Pertea GM, Antonescu CM, Chang TC, Mendell JT, Salzberg SL. StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nat Biotechnol 2015;33:290-5.

17. Robinson MD, McCarthy DJ, Smyth GK. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 2010;26:139-40.

18. He Q, He X, Xiao Y, et al. Tissue-specific expression atlas of murine mitochondrial tRNAs. J Biol Chem 2021;297:100960.

19. Miranda M, Bonekamp NA, Kühl I. Starting the engine of the powerhouse: mitochondrial transcription and beyond. Biol Chem 2022;403:779-805.

20. Navarro S, Ventura S. Computational methods to predict protein aggregation. Curr Opin Struct Biol 2022;73:102343.

21. Strodel B. Energy landscapes of protein aggregation and conformation switching in intrinsically disordered proteins. J Mol Biol 2021;433:167182.

22. Housmans JAJ, Wu G, Schymkowitz J, Rousseau F. A guide to studying protein aggregation. FEBS J 2023;290:554-83.

23. Dubreuil B, Matalon O, Levy ED. Protein abundance biases the amino acid composition of disordered regions to minimize non-functional interactions. J Mol Biol 2019;431:4978-92.

24. Garbuzynskiy SO, Lobanov MY, Galzitskaya OV. FoldAmyloid: a method of prediction of amyloidogenic regions from protein sequence. Bioinformatics 2010;26:326-32.

25. Dosztányi Z, Csizmók V, Tompa P, Simon I. The pairwise energy content estimated from amino acid composition discriminates between folded and intrinsically unstructured proteins. J Mol Biol 2005;347:827-39.

26. Rackovsky S, Scheraga HA. Hydrophobicity, hydrophilicity, and the radial and orientational distributions of residues in native proteins. Proc Natl Acad Sci USA 1977;74:5248-51.

27. Charoenkwan P, Kanthawong S, Nantasenamat C, Hasan MM, Shoombuatong W. iAMY-SCM: improved prediction and analysis of amyloid proteins using a scoring card method with propensity scores of dipeptides. Genomics 2021;113:689-98.

28. Friedberg MK, Redington AN. Right versus left ventricular failure: differences, similarities, and interactions. Circulation 2014;129:1033-44.

29. Nicoletti V, Palermo G, Del Prete E, Mancuso M, Ceravolo R. Understanding the multiple role of mitochondria in parkinson’s disease and related disorders: lesson from genetics and protein-interaction network. Front Cell Dev Biol 2021;9:636506.

30. Bell SM, Barnes K, De Marco M, et al. Mitochondrial dysfunction in alzheimer’s disease: a biomarker of the future? Biomedicines 2021;9:63.

31. McLendon PM, Robbins J. Desmin-related cardiomyopathy: an unfolding story. Am J Physiol Heart Circ Physiol 2011;301:H1220-8.

32. Suzuki T, Yashiro Y, Kikuchi I, et al. Complete chemical structures of human mitochondrial tRNAs. Nat Commun 2020;11:4269.

33. Cozen AE, Quartley E, Holmes AD, Hrabeta-Robinson E, Phizicky EM, Lowe TM. ARM-seq: AlkB-facilitated RNA methylation sequencing reveals a complex landscape of modified tRNA fragments. Nat Methods 2015;12:879-84.

34. Miller FJ, Rosenfeldt FL, Zhang C, Linnane AW, Nagley P. Precise determination of mitochondrial DNA copy number in human skeletal and cardiac muscle by a PCR-based assay: lack of change of copy number with age. Nucleic Acids Res 2003;31:e61.

35. Pohjoismäki JL, Goffart S, Taylor RW, et al. Developmental and pathological changes in the human cardiac muscle mitochondrial DNA organization, replication and copy number. PLoS One 2010;5:e10426.

36. Rackham O, Filipovska A. Organization and expression of the mammalian mitochondrial genome. Nat Rev Genet 2022;23:606-23.

The Journal of Cardiovascular Aging
ISSN 2768-5993 (Online)

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/