REFERENCES

1. Wan, C.; Xiao, K.; Angelin, A.; Antonietti, M.; Chen, X. The rise of bioinspired ionotronics. Adv. Intell. Syst. 2019, 1, 1900073.

2. Wu, B.; Yan, Y.; Zhu, Y.; Ji, C.; Lin, Y.; Lang, C. Ions in motion: From biological channels to engineered transport systems. Giant 2025, 22, 100352.

3. Transport Across Natural and Modified Biological Membranes and its Implications in Physiology and Therapy; Kulbacka, J., Satkauskas, S., Eds.; Advances in Anatomy, Embryology and Cell Biology, Vol. 227; Springer International Publishing, 2017.

4. Funk, R. H. W.; Scholkmann, F. The significance of bioelectricity on all levels of organization of an organism. Part 1: from the subcellular level to cells. Prog. Biophys. Mol. Biol. 2023, 177, 185-201.

5. Levin, M. Large-scale biophysics: ion flows and regeneration. Trends. Cell. Biol. 2007, 17, 261-70.

6. Levin, M. Bioelectric networks: the cognitive glue enabling evolutionary scaling from physiology to mind. Anim. Cogn. 2023, 26, 1865-91.

7. Sahasrabudhe, A.; Cea, C.; Anikeeva, P. Multifunctional bioelectronics for brain-body circuits. Nat. Rev. Bioeng. 2025, 3, 465-84.

8. Dai, Y.; Zhou, Z.; Yu, W.; et al. Biomolecular condensates regulate cellular electrochemical equilibria. Cell 2024, 187, 5951-5966.e18.

9. Trinh, M. D. L.; Masuda, S. Chloroplast pH homeostasis for the regulation of photosynthesis. Front. Plant. Sci. 2022, 13, 919896.

10. Lyu, H.; Lazár, D. Effect of ion fluxes on regulating the light-induced transthylakoid electric potential difference. Plant. Physiol. Biochem. 2023, 194, 60-9.

11. Chan, D. C. Mitochondria: dynamic organelles in disease, aging, and development. Cell 2006, 125, 1241-52.

12. Vyssokikh, M. Y.; Holtze, S.; Averina, O. A.; et al. Mild depolarization of the inner mitochondrial membrane is a crucial component of an anti-aging program. Proc. Natl. Acad. Sci. U. S. A. 2020, 117, 6491-501.

13. Baumann, N.; Pham-Dinh, D. Biology of oligodendrocyte and myelin in the mammalian central nervous system. Physiol. Rev. 2001, 81, 871-927.

14. Bazargani, N.; Attwell, D. Astrocyte calcium signaling: the third wave. Nat. Neurosci. 2016, 19, 182-9.

15. Bers, D. M. Cardiac excitation-contraction coupling. Nature 2002, 415, 198-205.

16. Hagihara, T.; Mano, H.; Miura, T.; Hasebe, M.; Toyota, M. Calcium-mediated rapid movements defend against herbivorous insects in Mimosa pudica. Nat. Commun. 2022, 13, 6412.

17. Jia, N.; Yang, J.; Liu, J.; Zhang, J. Electric field: a key signal in wound healing. Chin. J. Plast. Reconstr. Surg. 2021, 3, 95-102.

18. Schroeder, T. B. H.; Guha, A.; Lamoureux, A.; et al. An electric-eel-inspired soft power source from stacked hydrogels. Nature 2017, 552, 214-8.

19. de Santana, C. D.; Crampton, W. G. R.; Dillman, C. B.; et al. Unexpected species diversity in electric eels with a description of the strongest living bioelectricity generator. Nat. Commun. 2019, 10, 4000.

20. Pedraja, F.; Sawtell, N. B. Collective sensing in electric fish. Nature 2024, 628, 139-44.

21. Nadell, C. D.; Xavier, J. B.; Foster, K. R. The sociobiology of biofilms. FEMS. Microbiol. Rev. 2009, 33, 206-24.

22. Malvankar, N. S.; Vargas, M.; Nevin, K. P.; et al. Tunable metallic-like conductivity in microbial nanowire networks. Nat. Nanotechnol. 2011, 6, 573-9.

23. Xiao, T.; Zhao, X.; Zhang, Y.; Yan, Y. Iontronic components: From liquid- to solid-states. Nano. Res. 2023, 16, 13343-57.

24. Ro, Y. G.; Na, S.; Kim, J.; et al. Iontronics: neuromorphic sensing and energy harvesting. ACS. Nano. 2025, 19, 24425-507.

25. Chen, X.; Xia, X.; Guo, C. F. Flexible iontronic sensing: ionic materials, electrodes, and encapsulation. Adv. Funct. Mater. 2025, 36, e12920.

26. Xiao, K.; Wan, C.; Jiang, L.; Chen, X.; Antonietti, M. Bioinspired ionic sensory systems: the successor of electronics. Adv. Mater. 2020, 32, e2000218.

27. Zhang, Y.; Riexinger, J.; Yang, X.; et al. A microscale soft ionic power source modulates neuronal network activity. Nature 2023, 620, 1001-6.

28. Zhang, Y.; Sun, T.; Yang, X.; et al. A microscale soft lithium-ion battery for tissue stimulation. Nat. Chem. Eng. 2024, 1, 691-701.

29. Zhang, Y.; Tan, C. M. J.; Toepfer, C. N.; Lu, X.; Bayley, H. Microscale droplet assembly enables biocompatible multifunctional modular iontronics. Science 2024, 386, 1024-30.

30. Maraj, J. J.; Najem, J. S.; Ringley, J. D.; Weiss, R. J.; Rose, G. S.; Sarles, S. A. Short-term facilitation-then-depression enables adaptive processing of sensory inputs by ion channels in biomolecular synapses. ACS. Appl. Electron. Mater. 2021, 3, 4448-58.

31. Mansour, M. M.; Maraj, J. J.; Pyron, R. J.; Barrera, F. N.; Sarles, S. A. Biomolecular neuristors from functionalized lipid membranes. Adv. Funct. Mater. 2024, 34, 2409296.

32. Segars, B.; Rosenberg, K.; Shrestha, S.; Maraj, J. J.; Sarles, S. A.; Freeman, E. Neuron-inspired biomolecular memcapacitors formed using droplet interface bilayer networks. Adv. Elect. Mater. 2025, 11, 2400644.

33. Luo, J.; Remy, A.; Zhang, Y. Iontronic devices from biological nanopores to artificial systems: emerging applications and future perspectives. Chem. Rev. 2025, 125, 11840-77.

34. Liu, J.; Qing, Y.; Zhou, L.; et al. Enzyme-enabled droplet biobattery for powering synthetic tissues. Angew. Chem. Int. Ed. Engl. 2024, 63, e202408665.

35. Morth, J. P.; Pedersen, B. P.; Buch-Pedersen, M. J.; et al. A structural overview of the plasma membrane Na+ ,K+-ATPase and H+-ATPase ion pumps. Nat. Rev. Mol. Cell. Biol. 2011, 12, 60-70.

36. Galera-Laporta, L.; Comerci, C. J.; Garcia-Ojalvo, J.; Süel, G. M. IonoBiology: the functional dynamics of the intracellular metallome, with lessons from bacteria. Cell. Syst. 2021, 12, 497-508.

37. Choi, S.; Lee, J. M.; Kim, K. K. Biomolecular condensates: molecular structure, biological functions, diseases, and therapeutic targets. Mol. Biomed. 2025, 6, 99.

38. Middleton, P.; Vergis, N. Mitochondrial dysfunction and liver disease: role, relevance, and potential for therapeutic modulation. Therap. Adv. Gastroenterol. 2021, 14, 17562848211031394.

39. Stoffel, F.; Papp, M.; Gil-Garcia, M.; et al. Enhancement of enzymatic activity by biomolecular condensates through pH buffering. Nat. Commun. 2025, 16, 6368.

40. Dai, Y.; Chamberlayne, C. F.; Messina, M. S.; et al. Interface of biomolecular condensates modulates redox reactions. Chem 2023, 9, 1594-609.

41. Zhu, L.; Pan, Y.; Hua, Z.; Liu, Y.; Zhang, X. Ionic effect on the microenvironment of biomolecular condensates. J. Am. Chem. Soc. 2024, 146, 14307-17.

42. Banani, S. F.; Lee, H. O.; Hyman, A. A.; Rosen, M. K. Biomolecular condensates: organizers of cellular biochemistry. Nat. Rev. Mol. Cell. Biol. 2017, 18, 285-98.

43. Chen, K.; Cao, X. Biomolecular condensates: phasing in regulated host-pathogen interactions. Trends. Immunol. 2025, 46, 29-45.

44. Finazzi, G.; Petroutsos, D.; Tomizioli, M.; et al. Ions channels/transporters and chloroplast regulation. Cell. Calcium. 2015, 58, 86-97.

45. Armbruster, U.; Correa Galvis, V.; Kunz, H. H.; Strand, D. D. The regulation of the chloroplast proton motive force plays a key role for photosynthesis in fluctuating light. Curr. Opin. Plant. Biol. 2017, 37, 56-62.

46. Li, M.; Svoboda, V.; Davis, G.; Kramer, D.; Kunz, H. H.; Kirchhoff, H. Impact of ion fluxes across thylakoid membranes on photosynthetic electron transport and photoprotection. Nat. Plants. 2021, 7, 979-88.

47. Zhang, S.; Zou, B.; Cao, P.; et al. Structural insights into photosynthetic cyclic electron transport. Mol. Plant. 2023, 16, 187-205.

48. Pottosin, I.; Shabala, S. Transport across chloroplast membranes: optimizing photosynthesis for adverse environmental conditions. Mol. Plant. 2016, 9, 356-70.

49. Johnson, M. P. Structure, regulation and assembly of the photosynthetic electron transport chain. Nat. Rev. Mol. Cell. Biol. 2025, 26, 667-90.

50. Vercellino, I.; Sazanov, L. A. The assembly, regulation and function of the mitochondrial respiratory chain. Nat. Rev. Mol. Cell. Biol. 2022, 23, 141-61.

51. Fan, M.; Zhang, J.; Tsai, C. W.; et al. Structure and mechanism of the mitochondrial Ca2+ uniporter holocomplex. Nature 2020, 582, 129-33.

52. Chen, B.; Lyssiotis, C. A.; Shah, Y. M. Mitochondria-organelle crosstalk in establishing compartmentalized metabolic homeostasis. Mol. Cell. 2025, 85, 1487-508.

53. Coupland, C. E.; Karimi, R.; Bueler, S. A.; et al. High-resolution electron cryomicroscopy of V-ATPase in native synaptic vesicles. Science 2024, 385, 168-74.

54. Verweij, W.; Spelt, C.; Di Sansebastiano, G. P.; et al. An H+ P-ATPase on the tonoplast determines vacuolar pH and flower colour. Nat. Cell. Biol. 2008, 10, 1456-62.

55. Li, Y.; Zeng, H.; Xu, F.; Yan, F.; Xu, W. H+-ATPases in plant growth and stress responses. Annu. Rev. Plant. Biol. 2022, 73, 495-521.

56. Schofield, Z.; Meloni, G. N.; Tran, P.; et al. Bioelectrical understanding and engineering of cell biology. J. R. Soc. Interface. 2020, 17, 20200013.

57. Chen, S.; Zhang, T.; Tappertzhofen, S.; Yang, Y.; Valov, I. Electrochemical-memristor-based artificial neurons and synapses-fundamentals, applications, and challenges. Adv. Mater. 2023, 35, e2301924.

58. Kuznetsov, A. V.; Javadov, S.; Grimm, M.; Margreiter, R.; Ausserlechner, M. J.; Hagenbuchner, J. Crosstalk between mitochondria and cytoskeleton in cardiac cells. Cells 2020, 9.

59. Bean, B. P. The action potential in mammalian central neurons. Nat. Rev. Neurosci. 2007, 8, 451-65.

60. Debanne, D. Information processing in the axon. Nat. Rev. Neurosci. 2004, 5, 304-16.

61. Raghavan, M.; Fee, D.; Barkhaus, P. E. Generation and propagation of the action potential; Handbook of Clinical Neurology, Vol. 160; Elsevier, 2019; pp. 3-22.

62. Guo, Y. M.; Ong, C. K. Possible mechanism of action potential propagation mediated by static electric field: a novel assumption of understanding nerve interaction and ephaptic coupling. Heliyon 2024, 10, e37637.

63. Schmidt, H.; Knösche, T. R. Action potential propagation and synchronisation in myelinated axons. PLoS. Comput. Biol. 2019, 15, e1007004.

64. Pásek, M.; Simurda, J.; Christé, G.; Orchard, C. H. Modelling the cardiac transverse-axial tubular system. Prog. Biophys. Mol. Biol. 2008, 96, 226-43.

65. Gilbert, G.; Demydenko, K.; Dries, E.; et al. Calcium signaling in cardiomyocyte function. Cold. Spring. Harb. Perspect. Biol. 2020, 12, a035428.

66. Huang, C. L.; Lei, M. Cardiomyocyte electrophysiology and its modulation: current views and future prospects. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 2023, 378, 20220160.

67. Liu, J.; Laksman, Z.; Backx, P. H. The electrophysiological development of cardiomyocytes. Adv. Drug. Delivery. Rev. 2016, 96, 253-73.

68. Stoppel, W. L.; Kaplan, D. L. Black LD, 3. R. D. Electrical and mechanical stimulation of cardiac cells and tissue constructs. Adv. Drug. Delivery. Rev. 2016, 96, 135-55.

69. Rorsman, P.; Ashcroft, F. M. Pancreatic β-cell electrical activity and insulin secretion: of mice and men. Physiol. Rev. 2018, 98, 117-214.

70. Gao, Y. Biology of Vascular Smooth Muscle: Vasoconstriction and Dilatation; Springer Nature Singapore, 2022.

71. Hansali, S.; Pio-lopez, L.; Lapalme, J. V.; Levin, M. The role of bioelectrical patterns in regulative morphogenesis: an evolutionary simulation and validation in planarian regeneration. IEEE. Trans. Mol. Biol. Multi-Scale. Commun. 2025, 11, 305-31.

72. Durant, F.; Morokuma, J.; Fields, C.; Williams, K.; Adams, D. S.; Levin, M. Long-term, stochastic editing of regenerative anatomy via targeting endogenous bioelectric gradients. Biophys. J. 2017, 112, 2231-43.

73. Chernet, B. T.; Levin, M. Transmembrane voltage potential is an essential cellular parameter for the detection and control of tumor development in a Xenopus model. Dis. Model. Mech. 2013, 6, 595-607.

74. Mousavi, S. A.; Chauvin, A.; Pascaud, F.; Kellenberger, S.; Farmer, E. E. GLUTAMATE RECEPTOR-LIKE genes mediate leaf-to-leaf wound signalling. Nature 2013, 500, 422-6.

75. Toyota, M.; Spencer, D.; Sawai-Toyota, S.; et al. Glutamate triggers long-distance, calcium-based plant defense signaling. Science 2018, 361, 1112-5.

76. Wudick, M. M.; Portes, M. T.; Michard, E.; et al. CORNICHON sorting and regulation of GLR channels underlie pollen tube Ca2+ homeostasis. Science 2018, 360, 533-6.

77. Tian, W.; Wang, C.; Gao, Q.; Li, L.; Luan, S. Calcium spikes, waves and oscillations in plant development and biotic interactions. Nat. Plants. 2020, 6, 750-9.

78. Bellandi, A.; Papp, D.; Breakspear, A.; et al. Diffusion and bulk flow of amino acids mediate calcium waves in plants. Sci. Adv. 2022, 8, eabo6693.

79. Yan, C.; Gao, Q.; Yang, M.; et al. Ca2+/calmodulin-mediated desensitization of glutamate receptors shapes plant systemic wound signalling and anti-herbivore defence. Nat. Plants. 2024, 10, 145-60.

80. Lin, J.; Guan, Q.; Feng, J.; et al. Interactions between active matters and endogenous fields. Adv. Mater. 2025, 37, e03091.

81. Zhao, M.; Song, B.; Pu, J.; et al. Electrical signals control wound healing through phosphatidylinositol-3-OH kinase-gamma and PTEN. Nature 2006, 442, 457-60.

82. Leal, J.; Shaner, S.; Jedrusik, N.; Savelyeva, A.; Asplund, M. Electrotaxis evokes directional separation of co-cultured keratinocytes and fibroblasts. Sci. Rep. 2023, 13, 11444.

83. Shim, G.; Breinyn, I. B.; Martínez-Calvo, A.; Rao, S.; Cohen, D. J. Bioelectric stimulation controls tissue shape and size. Nat. Commun. 2024, 15, 2938.

84. Yu, S. M.; Granick, S. Electric spiking activity in epithelial cells. Proc. Natl. Acad. Sci. U. S. A. 2025, 122, e2427123122.

85. Saw, T. B.; Gao, X.; Li, M.; et al. Transepithelial potential difference governs epithelial homeostasis by electromechanics. Nat. Phys. 2022, 18, 1122-8.

86. Cervera, J.; Manzanares, J. A.; Levin, M.; Mafe, S. Oscillatory phenomena in electrophysiological networks: the coupling between cell bioelectricity and transcription. Comput. Biol. Med. 2024, 180, 108964.

87. Ferreira, F.; Moreira, S.; Zhao, M.; Barriga, E. H. Stretch-induced endogenous electric fields drive directed collective cell migration in vivo. Nat. Mater. 2025, 24, 462-70.

88. Harris, M. P. Bioelectric signaling as a unique regulator of development and regeneration. Development 2021, 148, dev180794.

89. Levin, M. Bioelectric signaling: reprogrammable circuits underlying embryogenesis, regeneration, and cancer. Cell 2021, 184, 1971-89.

90. Levin, M. Bioelectric mechanisms in regeneration: Unique aspects and future perspectives. Semin. Cell. Dev. Biol. 2009, 20, 543-56.

91. Cervera, J.; Pai, V. P.; Levin, M.; Mafe, S. From non-excitable single-cell to multicellular bioelectrical states supported by ion channels and gap junction proteins: Electrical potentials as distributed controllers. Prog. Biophys. Mol. Biol. 2019, 149, 39-53.

92. Levin, M.; Selberg, J.; Rolandi, M. Endogenous bioelectrics in development, cancer, and regeneration: drugs and bioelectronic devices as electroceuticals for regenerative medicine. iScience 2019, 22, 519-33.

93. Pio-Lopez, L.; Levin, M. Morphoceuticals: perspectives for discovery of drugs targeting anatomical control mechanisms in regenerative medicine, cancer and aging. Drug. Discov. Today. 2023, 28, 103585.

94. Kofman, K.; Levin, M. Bioelectric pharmacology of cancer: a systematic review of ion channel drugs affecting the cancer phenotype. Prog. Biophys. Mol. Biol. 2024, 191, 25-39.

95. Shook, E. N.; Barlow, G. T.; Garcia-Rosales, D.; Gibbons, C. J.; Montague, T. G. Dynamic skin behaviors in cephalopods. Curr. Opin. Neurobiol. 2024, 86, 102876.

96. Yu, Y.; Zhu, X.; Jiang, S.; et al. Cephalopods’ skin-inspired design of nanoscale electronic transport layers for adaptive electrochromic tuning. Adv. Sci. (Weinh). 2024, 11, e2405444.

97. Gorby, Y. A.; Yanina, S.; McLean, J. S.; et al. Electrically conductive bacterial nanowires produced by Shewanella oneidensis strain MR-1 and other microorganisms. Proc. Natl. Acad. Sci. U. S. A. 2006, 103, 11358-63.

98. Zhang, Y.; Tao, T. H. A bioinspired wireless epidermal photoreceptor for artificial skin vision. Adv. Funct. Mater. 2020, 30, 2000381.

99. Montague, T. G. Neural control of cephalopod camouflage. Curr. Biol. 2023, 33, R1095-100.

100. Zylinski, S.; Johnsen, S. Mesopelagic cephalopods switch between transparency and pigmentation to optimize camouflage in the deep. Curr. Biol. 2011, 21, 1937-41.

101. Shi, H.; Wu, S.; Si, M.; et al. Cephalopod-inspired design of photomechanically modulated display systems for on-demand fluorescent patterning. Adv. Mater. 2022, 34, e2107452.

102. Xu, J.; Cui, X.; Zhang, H. The third form electric organ discharge of electric eels. Sci. Rep. 2021, 11, 6193.

103. He, P.; Yue, J.; Qiu, Z.; Meng, Z.; He, J.; Li, D. Consecutive multimaterial printing of biomimetic ionic hydrogel power sources with high flexibility and stretchability. Nat. Commun. 2024, 15, 5261.

104. Worm, M.; Landgraf, T.; Prume, J.; Nguyen, H.; Kirschbaum, F.; von der Emde, G. Evidence for mutual allocation of social attention through interactive signaling in a mormyrid weakly electric fish. Proc. Natl. Acad. Sci. U. S. A. 2018, 115, 6852-7.

105. Liu, X.; Ueki, T.; Gao, H.; et al. Microbial biofilms for electricity generation from water evaporation and power to wearables. Nat. Commun. 2022, 13, 4369.

106. Guberman-Pfeffer, M. J.; Dorval Courchesne, N.; Lovley, D. R. Microbial nanowires for sustainable electronics. Nat. Rev. Bioeng. 2024, 2, 869-86.

107. Prindle, A.; Liu, J.; Asally, M.; Ly, S.; Garcia-Ojalvo, J.; Süel, G. M. Ion channels enable electrical communication in bacterial communities. Nature 2015, 527, 59-63.

108. Ritz, T.; Thalau, P.; Phillips, J. B.; Wiltschko, R.; Wiltschko, W. Resonance effects indicate a radical-pair mechanism for avian magnetic compass. Nature 2004, 429, 177-80.

109. Engels, S.; Schneider, N. L.; Lefeldt, N.; et al. Anthropogenic electromagnetic noise disrupts magnetic compass orientation in a migratory bird. Nature 2014, 509, 353-6.

110. Xu, J.; Jarocha, L. E.; Zollitsch, T.; et al. Magnetic sensitivity of cryptochrome 4 from a migratory songbird. Nature 2021, 594, 535-40.

111. Harikesh, P. C.; Yang, C. Y.; Tu, D.; et al. Organic electrochemical neurons and synapses with ion mediated spiking. Nat. Commun. 2022, 13, 901.

112. Kim, Y.; Chortos, A.; Xu, W.; et al. A bioinspired flexible organic artificial afferent nerve. Science 2018, 360, 998-1003.

113. Sproncken, C. C. M.; Liu, P.; Monney, J.; et al. Large-area, self-healing block copolymer membranes for energy conversion. Nature 2024, 630, 866-71.

114. Wang, C.; Fu, K. K.; Dai, J.; et al. Inverted battery design as ion generator for interfacing with biosystems. Nat. Commun. 2017, 8, 15609.

115. Najem, J. S.; Taylor, G. J.; Weiss, R. J.; et al. Memristive ion channel-doped biomembranes as synaptic mimics. ACS. Nano. 2018, 12, 4702-11.

116. Jin, Y.; Mikhailova, E.; Lei, M.; et al. Integration of 3D-printed cerebral cortical tissue into an ex vivo lesioned brain slice. Nat. Commun. 2023, 14, 5986.

117. Yang, X.; Artibani, M.; Jin, Y.; et al. 3D microtumors representing ovarian cancer minimal residual disease respond to the fatty acid oxidation inhibitor perhexiline. Adv. Healthc. Mater. 2025, 14, e2404072.

118. Li, Z.; Myers, S. K.; Xiao, J.; et al. Neuromorphic ionic computing in droplet interface synapses. Sci. Adv. 2025, 11, eadv6603.

119. Hou, Y.; Hou, X. Bioinspired nanofluidic iontronics. Science 2021, 373, 628-9.

120. Peng, P.; Qian, H.; Liu, J.; Wang, Z.; Wei, D. Bioinspired ionic control for energy and information flow. Int. J. Smart. Nano. Mater. 2024, 15, 198-221.

121. Chang, Y.; Wang, L.; Li, R.; et al. First decade of interfacial iontronic sensing: from droplet sensors to artificial skins. Adv. Mater. 2021, 33, e2003464.

122. Yang, X.; Tsai, C.; Yang, Y.; et al. Nano-bio interfaces for electrical and biochemical signal transduction. Nat. Rev. Bioeng. 2025, 374.

123. Shi, J.; Li, P.; Kim, S.; Tian, B. Implantable bioelectronic devices for photoelectrochemical and electrochemical modulation of cells and tissues. Nat. Rev. Bioeng. 2025, 3, 485-504.

124. Chen, W.; Zhai, L.; Zhang, S.; et al. Cascade-heterogated biphasic gel iontronics for electronic-to-multi-ionic signal transmission. Science 2023, 382, 559-65.

125. Li, X. H.; Hu, N.; Chang, Z. H.; et al. Brain organoid maturation and implantation integration based on electrical signals input. J. Adv. Res. 2025, 73, 375-95.

126. Yan, T.; Liu, J. Transmembrane ion channels: from natural to artificial systems. Angew. Chem. Int. Ed. Engl. 2025, 64, e202416200.

127. Liu, M.; Tao, T. H.; Zhang, Y. Silk materials light up the green society. Adv. Energy. Sustain. Res. 2021, 2, 2100035.

128. Liu, M.; Zhang, Y.; Liu, K.; et al. Biomimicking antibacterial opto-electro sensing sutures made of regenerated silk proteins. Adv. Mater. 2021, 33, e2004733.

129. Zhang, Y.; Chen, X.; Chen, D.; et al. Partially metal-coated tips for near-field nanospectroscopy. Phys. Rev. Applied. 2021, 15, 014048.

130. Deng, K.; Luo, R.; Chen, Y.; et al. Electrical stimulation therapy - dedicated to the perfect plastic repair. Adv. Sci. (Weinh). 2025, 12, e2409884.

131. Liu, Y.; Bai, Y.; Heng, B. C.; et al. Biomimetic electroactive materials and devices for regenerative engineering. Nat. Rev. Electr. Eng. 2025, 2, 188-204.

132. Liu, M.; Zhang, Y.; Tao, T. H. Recent progress in bio-integrated intelligent sensing system. Adv. Intell. Syst. 2022, 4, 2100280.

133. Liu, M.; Zhang, Y.; Wang, J.; et al. A star-nose-like tactile-olfactory bionic sensing array for robust object recognition in non-visual environments. Nat. Commun. 2022, 13, 79.

134. Liu, M.; Zhang, Y.; Zhang, Y.; Zhou, Z.; Qin, N.; Tao, T. H. Robotic manipulation under harsh conditions using self-healing silk-based iontronics. Adv. Sci. (Weinh). 2022, 9, e2102596.

135. Keene, S. T.; Lubrano, C.; Kazemzadeh, S.; et al. A biohybrid synapse with neurotransmitter-mediated plasticity. Nat. Mater. 2020, 19, 969-73.

136. John, R. A.; Tiwari, N.; Patdillah, M. I. B.; et al. Self healable neuromorphic memtransistor elements for decentralized sensory signal processing in robotics. Nat. Commun. 2020, 11, 4030.

137. Li, J.; Du, L.; Kong, X.; et al. Designing artificial ion channels with strict K+/Na+ selectivity toward next-generation electric-eel-mimetic ionic power generation. Natl. Sci. Rev. 2023, 10, nwad260.

138. Jiang, Q.; Liu, M. Recent progress in artificial neurons for neuromodulation. J. Funct. Biomater. 2024, 15, 214.

139. Pei, H.; Hu, H.; Dong, Y.; et al. Electric eels inspired iontronic artificial skin with multimodal perception and in‐sensor reservoir computing. Adv. Funct. Mater. 2025, 35, 2506431.

140. Wang, L.; Jiao, Y.; Zhang, H.; et al. Neuromorphic iontronic devices based on soft ionic conductors. Chem. Soc. Rev. 2026, 55, 299-335.

141. Ma, Y.; Niu, Y.; Pei, R.; Wang, W.; Wei, B.; Xie, Y. Reconfigurable neuromorphic computing by a microdroplet. Cell. Rep. Phys. Sci. 2024, 5, 102202.

142. Liu, W.; Mei, T.; Cao, Z.; et al. Bioinspired carbon nanotube-based nanofluidic ionic transistor with ultrahigh switching capabilities for logic circuits. Sci. Adv. 2024, 10, eadj7867.

143. Chen, L.; Ren, M.; Zhou, J.; et al. Bioinspired iontronic synapse fibers for ultralow-power multiplexing neuromorphic sensorimotor textiles. Proc. Natl. Acad. Sci. U. S. A. 2024, 121, e2407971121.

144. Zhang, Y.; Zhou, Z.; Fan, Z.; et al. Self-powered multifunctional transient bioelectronics. Small 2018, 14, e1802050.

145. Zhang, Y.; Zhou, Z.; Sun, L.; Liu, Z.; Xia, X.; Tao, T. H. “Genetically engineered” biofunctional triboelectric nanogenerators using recombinant spider silk. Adv. Mater. 2018, 30, e1805722.

146. Zhang, Y.; Tao, T. H. Skin-friendly electronics for acquiring human physiological signatures. Adv. Mater. 2019, 31, e1905767.

147. Huang, T.; Zhang, Y.; He, P.; et al. “Self-matched” tribo/piezoelectric nanogenerators using vapor-induced phase-separated poly(vinylidene fluoride) and recombinant spider silk. Adv. Mater. 2020, 32, e1907336.

148. Turcu, D.; Zadina, A. N.; Abbott, L. F.; Sawtell, N. B. An end-to-end model of active electrosensation. Curr. Biol. 2025, 35, 2295-2306.e4.

149. Kostiainen, M. A.; Priimagi, A.; Timonen, J. V. I.; et al. Materials Inspired by Living Functions. Adv. Funct. Mater. 2024, 34, 2402097.

150. Kim, S.; Eig, E.; Tian, B. The convergence of bioelectronics and engineered living materials. Cell. Reports. Physical. Science. 2024, 5, 102149.

151. Greenblatt, J. F.; Alberts, B. M.; Krogan, N. J. Discovery and significance of protein-protein interactions in health and disease. Cell 2024, 187, 6501-17.