REFERENCES
2. Zhang, Z.; Wen, L.; Jiang, L. Nanofluidics for osmotic energy conversion. Nat. Rev. Mater. 2021, 6, 622-39.
3. Fan, K.; Zhou, S.; Xie, L.; et al. Interfacial assembly of 2D graphene-derived ion channels for water-based green energy conversion. Adv. Mater. 2024, 36, e2307849.
4. Xu, T.; Ding, X.; Cheng, H.; Han, G.; Qu, L. Moisture-enabled electricity from hygroscopic materials: a new type of clean energy. Adv. Mater. 2024, 36, e2209661.
5. Shen, D.; Duley, W. W.; Peng, P.; et al. Moisture-enabled electricity generation: from physics and materials to self-powered applications. Adv. Mater. 2020, 32, e2003722.
6. Yang, F.; Peng, P.; Yan, Z.; et al. Vertical iontronic energy storage based on osmotic effects and electrode redox reactions. Nat. Energy. 2024, 9, 263-71.
7. Yu, G.; Zhang, Q.; Wang, M.; et al. Osmotic energy directly driving flexible all-solid-state 2D nanofluidic pressure sensors. Adv. Mater. 2025, 37, e06990.
8. Ni, K.; Ren, Q.; Zhang, X.; Liu, R. A trilayer nanofluidic ionic diode for high-performance moisture-enabled energy harvesting and ionic logic operations. Adv. Mater. 2026, 38, e13405.
10. Bisri, S. Z.; Shimizu, S.; Nakano, M.; Iwasa, Y. Endeavor of iontronics: from fundamentals to applications of ion-controlled electronics. Adv. Mater. 2017, 29, 1607054.
11. Ni, K.; Ren, Q.; Liu, S.; et al. Advances in asymmetric moist-electric generators with innovative heterogeneous structures. Energy. Environ. Sci. 2024, 17, 9406-24.
12. Xiao, H.; Yu, Z.; Liang, J.; et al. Wetting behavior-induced interfacial transmission of energy and signal: materials, mechanisms, and applications. Adv. Mater. 2024, 36, e2407856.
13. Ni, K.; Xu, B.; Wang, Z.; et al. Ion-diode-like heterojunction for improving electricity generation from water droplets by capillary infiltration. Adv. Mater. 2023, 35, e2305438.
14. Lei, D.; Wang, Y.; Zhang, Q.; Wang, S.; Jiang, L.; Zhang, Z. High-performance solid-state proton gating membranes based on two-dimensional hydrogen-bonded organic framework composites. Nat. Commun. 2025, 16, 754.
15. Duan, W.; Shao, B.; Wang, Z.; et al. Silicon nanowire/ionic hydrogel-based hybrid moist-electric generators with enhanced voltage output and operational stability. Energy. Environ. Sci. 2024, 17, 3788-96.
16. Shen, D.; Xiao, M.; Zou, G.; Liu, L.; Duley, W. W.; Zhou, Y. N. Self-powered wearable electronics based on moisture enabled electricity generation. Adv. Mater. 2018, 30, e1705925.
17. Yin, J.; Liu, N.; Jia, P.; et al. MXene‐enhanced environmentally stable organohydrogel ionic diode toward harvesting ultralow‐frequency mechanical energy and moisture energy. SusMat 2023, 3, 859-76.
18. Fang, J.; Zhang, X.; Duan, P.; et al. Efficient and cold-tolerant moisture-enabled power generator combining ionic diode and ionic hydrogel. Mater. Horiz. 2024, 11, 1261-71.
19. Yang, M.; Hu, Y.; Zheng, S.; Liu, Z.; Li, W.; Yan, F. Integrated moist-thermoelectric generator for efficient waste steam energy utilization. Adv. Sci. (Weinh). 2023, 10, e2206071.
20. Bai, J.; Liao, Q.; Yao, H.; et al. Self-induced interface enhanced moisture-harvesting and light-trapping toward high performance electric power generation. Energy. Environ. Sci. 2023, 16, 3088-97.
21. Bai, J.; Huang, Y.; Wang, H.; et al. Sunlight-coordinated high-performance moisture power in natural conditions. Adv. Mater. 2022, 34, e2103897.
22. Ge, Z.; Guo, W.; Tao, Y.; et al. Ambient moisture-driven self-powered iontophoresis patch for enhanced transdermal drug delivery. Adv. Healthc. Mater. 2024, 13, e2401371.
23. Zhao, F.; Cheng, H.; Zhang, Z.; Jiang, L.; Qu, L. Direct power generation from a graphene oxide film under moisture. Adv. Mater. 2015, 27, 4351-7.
24. Zhang, Z.; Li, X.; Yin, J.; et al. Emerging hydrovoltaic technology. Nat. Nanotechnol. 2018, 13, 1109-19.
25. Tan, J.; Fang, S.; Zhang, Z.; et al. Self-sustained electricity generator driven by the compatible integration of ambient moisture adsorption and evaporation. Nat. Commun. 2022, 13, 3643.
26. Hu, Y.; Yang, W.; Wei, W.; et al. Phyto-inspired sustainable and high-performance fabric generators via moisture absorption-evaporation cycles. Sci. Adv. 2024, 10, eadk4620.
27. Qian, H.; Fan, H.; Peng, P.; et al. Biomimetic Janus MXene membrane with bidirectional ion permselectivity for enhanced osmotic effects and iontronic logic control. Sci. Adv. 2025, 11, eadx1184.
28. Wei, D.; Yang, F.; Jiang, Z.; Wang, Z. Flexible iontronics based on 2D nanofluidic material. Nat. Commun. 2022, 13, 4965.
29. Tan, J.; Wang, X.; Chu, W.; et al. Harvesting energy from atmospheric water: grand challenges in continuous electricity generation. Adv. Mater. 2024, 36, e2211165.
30. Kim, B.; Na, J.; Lim, H.; Kim, Y.; Kim, J.; Kim, E. Robust high thermoelectric harvesting under a self‐humidifying bilayer of metal organic framework and hydrogel layer. Adv. Funct. Mater. 2018, 29, 1807549.
31. Zhang, Y.; Long, D.; Feng, H.; et al. Bioinspired ion channel receptor based on hygroelectricity for precontact sensing of living organism. Biosens. Bioelectron. 2024, 247, 115922.
32. Zhao, F.; Wang, L.; Zhao, Y.; Qu, L.; Dai, L. Graphene oxide nanoribbon assembly toward moisture-powered information storage. Adv. Mater. 2017, 29, 1604972.
33. Zhang, Y.; Riexinger, J.; Yang, X.; et al. A microscale soft ionic power source modulates neuronal network activity. Nature 2023, 620, 1001-6.
34. Liu, W.; Mei, T.; Cao, Z.; et al. Bioinspired carbon nanotube-based nanofluidic ionic transistor with ultrahigh switching capabilities for logic circuits. Sci. Adv. 2024, 10, eadj7867.
35. Tao, Y.; Wang, Z.; Xu, H.; et al. Moisture-powered memristor with interfacial oxygen migration for power-free reading of multiple memory states. Nano. Energy. 2020, 71, 104628.
36. Zhang, J.; Liu, W.; Dai, J.; Xiao, K. Nanoionics from biological to artificial systems: an alternative beyond nanoelectronics. Adv. Sci. (Weinh). 2022, 9, e2200534.
37. Ro, Y. G.; Na, S.; Kim, J.; et al. Iontronics: neuromorphic sensing and energy harvesting. ACS. Nano. 2025, 19, 24425-507.
38. Han, S. H.; Kim, S. I.; Oh, M. A.; Chung, T. D. Iontronic analog of synaptic plasticity: Hydrogel-based ionic diode with chemical precipitation and dissolution. Proc. Natl. Acad. Sci. U. S. A. 2023, 120, e2211442120.
39. Jiang, F.; Poh, W. C.; Chen, J.; et al. Ion rectification based on gel polymer electrolyte ionic diode. Nat. Commun. 2022, 13, 6669.


