REFERENCES

1. Hou, Y.; Hou, X. Bioinspired nanofluidic iontronics. Science 2021, 373, 628-9.

2. Burgoyne, R. D. Neuronal calcium sensor proteins: generating diversity in neuronal Ca2+ signalling. Nat. Rev. Neurosci. 2007, 8, 182-93.

3. Xiao, K.; Jiang, L.; Antonietti, M. Ion transport in nanofluidic devices for energy Harvesting. Joule 2019, 3, 2364-80.

4. Zhang, Z.; Wen, L.; Jiang, L. Nanofluidics for osmotic energy conversion. Nat. Rev. Mater. 2021, 6, 622-39.

5. Feiner, R.; Dvir, T. Tissue-electronics interfaces: from implantable devices to engineered tissues. Nat. Rev. Mater. 2017, 3, 17076.

6. Zhao, S.; Tseng, P.; Grasman, J.; et al. Programmable hydrogel ionic circuits for biologically matched electronic interfaces. Adv. Mater. 2018, 30, e1800598.

7. Devine, M. J.; Kittler, J. T. Mitochondria at the neuronal presynapse in health and disease. Nat. Rev. Neurosci. 2018, 19, 63-80.

8. MITCHELL, P. Coupling of phosphorylation to electron and hydrogen transfer by a chemi-osmotic type of mechanism. Nature 1961, 191, 144-8.

9. Sun, Z.; Guo, S. S.; Fässler, R. Integrin-mediated mechanotransduction. J. Cell. Biol. 2016, 215, 445-56.

10. Amoli, V.; Kim, J. S.; Jee, E.; et al. A bioinspired hydrogen bond-triggered ultrasensitive ionic mechanoreceptor skin. Nat. Commun. 2019, 10, 4019.

11. Pocock, D. C. D. Sight and knowledge. T. I. Brit. Geogr. 1981, 6, 385.

12. Nassi, J. J.; Callaway, E. M. Parallel processing strategies of the primate visual system. Nat. Rev. Neurosci. 2009, 10, 360-72.

13. Vermaas, D. A.; Veerman, J.; Saakes, M.; Nijmeijer, K. Influence of multivalent ions on renewable energy generation in reverse electrodialysis. Energy. Environ. Sci. 2014, 7, 1434-45.

14. Huang, L.; Bao, D.; Jiang, Y.; Regenauer-Lieb, K.; Zheng, Y.; Qiao, S. Z. The utilization of ions in seawater for electrocatalysis. Natl. Sci. Rev. 2025, 12, nwaf461.

15. Qian, H.; Peng, P.; Liu, Y.; Wang, Z. L.; Wei, D. Balancing selectivity and permeability in nanofluidic membranes for osmotic power generation. Prog. Energy. 2025, 7, 042001.

16. Bocquet, L. Nanofluidics coming of age. Nat. Mater. 2020, 19, 254-6.

17. Emmerich, T.; Ronceray, N.; Agrawal, K. V.; et al. Nanofluidics. Nat. Rev. Methods. Primers. 2024, 4, 69.

18. Wan, C.; Xiao, K.; Angelin, A.; Antonietti, M.; Chen, X. The rise of bioinspired ionotronics. Adv. Intell. Syst. 2019, 1, 1900073.

19. Zhang, S.; Zhang, J.; Zhang, Y.; Deng, Y. Nanoconfined ionic liquids. Chem. Rev. 2017, 117, 6755-833.

20. Lee, J.; Lu, W. D. On-demand reconfiguration of nanomaterials: when electronics meets ionics. Adv. Mater. 2018, 30.

21. Park, J. M.; Lim, S.; Sun, J. Y. Materials development in stretchable iontronics. Soft. Matter. 2022, 18, 6487-510.

22. Zhang, J.; Liu, W.; Dai, J.; Xiao, K. Nanoionics from biological to artificial systems: an alternative beyond nanoelectronics. Adv. Sci. (Weinh). 2022, 9, e2200534.

23. Liu, C.; Chen, H.; Wang, S.; et al. Two-dimensional materials for next-generation computing technologies. Nat. Nanotechnol. 2020, 15, 545-57.

24. Sparreboom, W.; van den Berg, A.; Eijkel, J. C. Principles and applications of nanofluidic transport. Nat. Nanotechnol. 2009, 4, 713-20.

25. Wang, X.; Salari, M.; Jiang, D.; et al. Electrode material-ionic liquid coupling for electrochemical energy storage. Nat. Rev. Mater. 2020, 5, 787-808.

26. Choi, C.; Ashby, D. S.; Butts, D. M.; et al. Achieving high energy density and high power density with pseudocapacitive materials. Nat. Rev. Mater. 2019, 5, 5-19.

27. Zhou, T.; Liu, T.; Huang, S.; et al. The influence of divalent ions on the osmotic energy conversion performance of 2D cation exchange membrane in reverse electrodialysis process. Desalination 2024, 591, 118036.

28. Avci, A. H.; Sarkar, P.; Tufa, R. A.; et al. Effect of Mg2+ ions on energy generation by reverse electrodialysis. J. Membr. Sci. 2016, 520, 499-506.

29. Esfandiar, A.; Radha, B.; Wang, F. C.; et al. Size effect in ion transport through angstrom-scale slits. Science 2017, 358, 511-3.

30. Shao, J. J.; Raidongia, K.; Koltonow, A. R.; Huang, J. Self-assembled two-dimensional nanofluidic proton channels with high thermal stability. Nat. Commun. 2015, 6, 7602.

31. Shen, J.; Liu, G.; Han, Y.; Jin, W. Artificial channels for confined mass transport at the sub-nanometre scale. Nat. Rev. Mater. 2021, 6, 294-312.

32. Wang, M.; Hou, Y.; Yu, L.; Hou, X. Anomalies of ionic/molecular transport in nano and sub-nano confinement. Nano. Lett. 2020, 20, 6937-46.

33. Wang, P.; Wang, M.; Liu, F.; et al. Ultrafast ion sieving using nanoporous polymeric membranes. Nat. Commun. 2018, 9, 569.

34. Lei, D.; Wang, Y.; Zhang, Q.; Wang, S.; Jiang, L.; Zhang, Z. High-performance solid-state proton gating membranes based on two-dimensional hydrogen-bonded organic framework composites. Nat. Commun. 2025, 16, 754.

35. Guo, R.; Zhou, Y.; Wang, W.; et al. Interlayer confinement toward short hydrogen bond network construction for fast hydroxide transport. Sci. Adv. 2025, 11, eadr5374.

36. Lu, D.; Li, R.; Rahman, M. M.; et al. Ligand-channel-enabled ultrafast Li-ion conduction. Nature 2024, 627, 101-7.

37. Dong, Z.; Chen, Q.; Ma, X.; et al. The role of co-ion transport in selectrodialysis for mono/divalent anion separation. J. Membr. Sci. 2025, 736, 124660.

38. Guo, Y.; He, J.; Zhang, J.; et al. Deciphering co-ion and counterion transport in polyamide desalination membranes reveals ion selectivity mechanisms. Sci. Adv. 2025, 11, eadu8302.

39. Tielrooij, K. J.; Garcia-Araez, N.; Bonn, M.; Bakker, H. J. Cooperativity in ion hydration. Science 2010, 328, 1006-9.

40. Yan, J.; Jiang, C.; Zeng, X.; et al. Synthesis of deuterated acids and bases using bipolar membranes. Nature 2025, 643, 961-6.

41. Baskin, A.; Prendergast, D. Ion solvation engineering: how to manipulate the multiplicity of the coordination environment of multivalent ions. J. Phys. Chem. Lett. 2020, 11, 9336-43.

42. Wang, X.; Toroz, D.; Kim, S.; Clegg, S. L.; Park, G. S.; Di Tommaso, D. Density functional theory based molecular dynamics study of solution composition effects on the solvation shell of metal ions. Phys. Chem. Chem. Phys. 2020, 22, 16301-13.

43. Schienbein, P.; Schwaab, G.; Forbert, H.; Havenith, M.; Marx, D. Correlations in the solute-solvent dynamics reach beyond the first hydration shell of ions. J. Phys. Chem. Lett. 2017, 8, 2373-80.

44. Xu, T.; Cui, Z.; Yao, T.; Zhao, Y.; Shen, L. Multi-ion coordinated water network in dilute acid electrolytes for ultralow-temperature (≤ -80 °C) proton energy storage. Angew. Chem. Int. Ed. Engl. 2025, 64, e202510830.

45. Yang, F.; Peng, P.; Yan, Z.; et al. Vertical iontronic energy storage based on osmotic effects and electrode redox reactions. Nat. Energy. 2024, 9, 263-71.

46. Zhu, Y. H.; Cui, Y. F.; Xie, Z. L.; Zhuang, Z. B.; Huang, G.; Zhang, X. B. Decoupled aqueous batteries using pH-decoupling electrolytes. Nat. Rev. Chem. 2022, 6, 505-17.

47. Bockris, J. O. M.; Reddy, A. K.; Gamboa-Aldeco, M. Modern Electrochemistry 2A; Kluwer Academic Publishers, 2002.

48. Huang, Y.; Cheng, H.; Yang, C.; et al. Interface-mediated hygroelectric generator with an output voltage approaching 1.5 volts. Nat. Commun. 2018, 9, 4166.

49. Feng, J.; Wang, Y.; Xu, Y.; Sun, Y.; Tang, Y.; Yan, X. Ion regulation of ionic liquid electrolytes for supercapacitors. Energy. Environ. Sci. 2021, 14, 2859-82.

50. Zhu, Y. H.; Yang, X.; Zhang, X. B. Hydronium ion batteries: a sustainable energy storage solution. Angew. Chem. Int. Ed. Engl. 2017, 56, 6378-80.

51. Li, M.; Lu, J.; Ji, X.; et al. Design strategies for nonaqueous multivalent-ion and monovalent-ion battery anodes. Nat. Rev. Mater. 2020, 5, 276-94.

52. Eftekhari, A.; Jian, Z.; Ji, X. Potassium secondary batteries. ACS. Appl. Mater. Interfaces. 2017, 9, 4404-19.

53. Pohlmann, S.; Kühnel, R. S.; Centeno, T. A.; Balducci, A. The influence of anion-cation combinations on the physicochemical properties of advanced electrolytes for supercapacitors and the capacitance of activated carbons. ChemElectroChem 2014, 1, 1301-11.

54. Surendralal, S.; Todorova, M.; Neugebauer, J. Impact of water coadsorption on the electrode potential of H-Pt(1 1 1)-liquid water interfaces. Phys. Rev. Lett. 2021, 126, 166802.

55. Li, P.; Jiang, Y.; Hu, Y.; et al. Hydrogen bond network connectivity in the electric double layer dominates the kinetic pH effect in hydrogen electrocatalysis on Pt. Nat. Catal. 2022, 5, 900-11.

56. Rohaizad, N.; Mayorga-Martinez, C. C.; Fojtů, M.; Latiff, N. M.; Pumera, M. Two-dimensional materials in biomedical, biosensing and sensing applications. Chem. Soc. Rev. 2021, 50, 619-57.

57. Peng, P.; Yang, F.; Wang, Z.; Wei, D. Integratable paper-based iontronic power source for all-in-one disposable electronics. Adv. Energy. Mater. 2023, 13, 2302360.

58. Bocquet, L.; Charlaix, E. Nanofluidics, from bulk to interfaces. Chem. Soc. Rev. 2010, 39, 1073-95.

59. Bard, A. J.; Faulkner, L. R.; White, H. S. Electrochemical methods: fundamentals and applications; John Wiley & Sons, 2001. https://eva.fcien.udelar.edu.uy/pluginfile.php/144317/mod_resource/content/3/Electrochemical%20Methods%20Bard%20Faulkner%20Cap1-4.pdf (accessed 2026-1-20).

60. Daiguji, H. Ion transport in nanofluidic channels. Chem. Soc. Rev. 2010, 39, 901-11.

61. Zhong, J.; Alibakhshi, M. A.; Xie, Q.; et al. Exploring anomalous fluid behavior at the nanoscale: direct visualization and quantification via nanofluidic devices. Acc. Chem. Res. 2020, 53, 347-57.

62. Chen, L.; Shi, G.; Shen, J.; et al. Ion sieving in graphene oxide membranes via cationic control of interlayer spacing. Nature 2017, 550, 380-3.

63. Hu, Y.; Wu, M.; Chi, F.; et al. Ultralow-resistance electrochemical capacitor for integrable line filtering. Nature 2023, 624, 74-9.

64. Wu, M.; Chi, F.; Geng, H.; et al. Arbitrary waveform AC line filtering applicable to hundreds of volts based on aqueous electrochemical capacitors. Nat. Commun. 2019, 10, 2855.

65. Feng, J.; Liu, K.; Graf, M.; et al. Observation of ionic Coulomb blockade in nanopores. Nat. Mater. 2016, 15, 850-5.

66. Tian, Y.; Song, Y.; Xia, Y.; et al. Nanoscale one-dimensional close packing of interfacial alkali ions driven by water-mediated attraction. Nat. Nanotechnol. 2024, 19, 479-84.

67. Kondrat, S.; Wu, P.; Qiao, R.; Kornyshev, A. A. Accelerating charging dynamics in subnanometre pores. Nat. Mater. 2014, 13, 387-93.

68. Kim, S.; Choi, S.; Lee, H. G.; et al. Neuromorphic van der Waals crystals for substantial energy generation. Nat. Commun. 2021, 12, 47.

69. Waser, R.; Aono, M. Nanoionics-based resistive switching memories. Nat. Mater. 2007, 6, 833-40.

70. Sangwan, V. K.; Hersam, M. C. Neuromorphic nanoelectronic materials. Nat. Nanotechnol. 2020, 15, 517-28.

71. Xiao, K.; Chen, L.; Zhang, Z.; et al. A tunable ionic diode based on a biomimetic structure-tailorable nanochannel. Angew. Chem. Int. Ed. Engl. 2017, 56, 8168-72.

72. Qian, H.; Fan, H.; Peng, P.; et al. Biomimetic Janus MXene membrane with bidirectional ion permselectivity for enhanced osmotic effects and iontronic logic control. Sci. Adv. 2025, 11, eadx1184.

73. Li, L.; Yang, Y.; He, N.; et al. Dual-interfacial gating unlocks bidirectional ionic flux for high-efficiency hydrovoltaic energy harvesting. Energy. Environ. Sci. 2025, 18, 8209-19.

74. Simons, R. Strong electric field effects on proton transfer between membrane-bound amines and water. Nature 1979, 280, 824-6.

75. Zhou, X.; Wang, Z.; Epsztein, R.; et al. Intrapore energy barriers govern ion transport and selectivity of desalination membranes. Sci. Adv. 2020, 6.

76. Hong, X.; Ma, X.; He, L.; et al. Regulating lattice-water-adsorbed ions to optimize intercalation potential in 3D Prussian blue based multi-ion microbattery. Small 2021, 17, e2007791.

77. Zhen, W.; Zhang, D.; Li, S.; et al. Efficient ion separation in multi-ion coexisting scenarios via two-dimensional metal-organic framework membranes. Chem. Eng. J. 2025, 515, 163496.

78. Xu, R.; Yu, H.; Ren, J.; et al. Regulate ion transport in subnanochannel membranes by ion-pairing. J. Am. Chem. Soc. 2025, 147, 17144-51.

79. Li, Y.; Chen, H.; Xiao, S.; et al. Ultrafast diameter-dependent water evaporation from nanopores. ACS. Nano. 2019, 13, 3363-72.

80. Peng, P.; Shen, P.; Qian, H.; et al. Photochemical iontronics with multitype ionic signal transmission at single pixel for self-driven color and tridimensional vision. Device 2025, 3, 100574.

81. Zhang, Y.; Wu, P.; Chen, C.; et al. Electrochemical power sources enabled by multi-ion carriers. Chem. Soc. Rev. 2025, 54, 9685-806.

82. Jin, C.; Wang, Y.; Zhao, X.; et al. Entropy driving “Quasi‐Zero Strain” stepwise multicationic redox chemistry toward a high-performance NASICON-cathode for Na-ion batteries. Adv. Funct. Mater. 2025, 35, 2422101.

83. Wang, S.; Jiao, S.; Tian, D.; et al. A novel ultrafast rechargeable multi-ions battery. Adv. Mater. 2017, 29.

84. Peng, P.; Qian, H.; Liu, J.; Wang, Z.; Wei, D. Bioinspired ionic control for energy and information flow. Int. J. Smart Nano Mater. 2024, 15, 198-221.

85. Liu, P.; Kong, X. Y.; Jiang, L.; Wen, L. Ion transport in nanofluidics under external fields. Chem. Soc. Rev. 2024, 53, 2972-3001.

86. Chen, W.; Zhai, L.; Zhang, S.; et al. Cascade-heterogated biphasic gel iontronics for electronic-to-multi-ionic signal transmission. Science 2023, 382, 559-65.

87. Zhao, Y.; Yan, X.; Xia, L.; et al. Enabling an ultraefficient lithium-selective construction through electric field-assisted ion control. Sci. Adv. 2025, 11, eadv6646.

88. Wang, Y.; Zhang, H.; Kang, Y.; Zhu, Y.; Simon, G. P.; Wang, H. Voltage-gated ion transport in two-dimensional sub-1 nm nanofluidic channels. ACS. Nano. 2019, 13, 11793-9.

89. Liu, W.; Mei, T.; Cao, Z.; et al. Bioinspired carbon nanotube-based nanofluidic ionic transistor with ultrahigh switching capabilities for logic circuits. Sci. Adv. 2024, 10, eadj7867.

90. He, Z.; Zhou, J.; Lu, X.; Corry, B. Bioinspired graphene nanopores with voltage-tunable ion selectivity for Na+ and K+. ACS. Nano. 2013, 7, 10148-57.

91. Xiao, K.; Chen, L.; Chen, R.; et al. Artificial light-driven ion pump for photoelectric energy conversion. Nat. Commun. 2019, 10, 74.

92. Zhou, S.; Zhang, X.; Xie, L.; et al. Dual-functional super-assembled mesoporous carbon-titania/AAO hetero-channels for bidirectionally photo-regulated ion transport. Small 2023, 19, e2301038.

93. Jin, M. L.; Park, S.; Lee, Y.; et al. An ultrasensitive, visco-poroelastic artificial mechanotransducer skin inspired by Piezo2 protein in mammalian Merkel cells. Adv. Mater. 2017, 29, 1605973.

94. Yang, R.; Dutta, A.; Li, B.; et al. Iontronic pressure sensor with high sensitivity over ultra-broad linear range enabled by laser-induced gradient micro-pyramids. Nat. Commun. 2023, 14, 2907.

95. Xu, T.; Jin, L.; Ao, Y.; et al. All-polymer piezo-ionic-electric electronics. Nat. Commun. 2024, 15, 10876.

96. Han, C. G.; Qian, X.; Li, Q.; et al. Giant thermopower of ionic gelatin near room temperature. Science 2020, 368, 1091-8.

97. Zhao, D.; Fabiano, S.; Berggren, M.; Crispin, X. Ionic thermoelectric gating organic transistors. Nat. Commun. 2017, 8, 14214.

98. Wang, J.; Wang, D.; Song, Z.; et al. Efficient solar energy conversion via bionic sunlight-driven ion transport boosted by synergistic photo-electric/thermal effects. Energy. Environ. Sci. 2023, 16, 3146-57.

99. Li, W.; Li, X.; He, J.; Zhai, J.; Fan, X. Solar-enhanced blue energy conversion via photo-electric/thermal in GO/MoS2/CNC nanofluidic membranes. Small 2025, 21, e06667.

100. Lin, S.; Chen, X.; Wang, Z. L. Contact electrification at the liquid-solid interface. Chem. Rev. 2022, 122, 5209-32.

101. Li, X.; Li, S.; Guo, X.; Shao, J.; Wang, Z. L.; Wei, D. Triboiontronics for efficient energy and information flow. Matter 2023, 6, 3912-26.

102. Zhang, L.; Wang, D. Triboiontronics based on dynamic electric double layer regulation. Matter 2023, 6, 3698-9.

103. Kavokine, N.; Marbach, S.; Siria, A.; Bocquet, L. Ionic coulomb blockade as a fractional Wien effect. Nat. Nanotechnol. 2019, 14, 573-8.

104. Molina, P.; Zapata, F.; Caballero, A. Anion recognition strategies based on combined noncovalent interactions. Chem. Rev. 2017, 117, 9907-72.

105. Evans, N. H.; Beer, P. D. Advances in anion supramolecular chemistry: from recognition to chemical applications. Angew. Chem. Int. Ed. Engl. 2014, 53, 11716-54.