REFERENCES

1. Lohman, D. F. Human intelligence: an introduction to advances in theory and research. Rev. Educ. Res. 1989, 59, 333.

2. Colom, R.; Karama, S.; Jung, R. E.; Haier, R. J. Human intelligence and brain networks. Dialogues. Clin. Neurosci. 2010, 12, 489-501.

3. Jiang, Y.; Mi, Q.; Zhu, L. Neurocomputational mechanism of real-time distributed learning on social networks. Nat. Neurosci. 2023, 26, 506-16.

4. Capsi-Morales, P.; Barsakcioglu, D. Y.; Catalano, M. G.; Grioli, G.; Bicchi, A.; Farina, D. Merging motoneuron and postural synergies in prosthetic hand design for natural bionic interfacing. Sci. Robot. 2025, 10, eado9509.

5. Mead, C. Neuromorphic electronic systems. Proc. IEEE. 1990, 78, 1629-36.

6. Merolla, P. A.; Arthur, J. V.; Alvarez-Icaza, R.; et al. Artificial brains. A million spiking-neuron integrated circuit with a scalable communication network and interface. Science 2014, 345, 668-73.

7. Diorio, C.; Hasler, P.; Minch, A.; Mead, C. A single-transistor silicon synapse. IEEE. Trans. Electron. Devices. 1996, 43, 1972-80.

8. Saito, Y.; Osako, Y.; Odagawa, M.; et al. Amygdalo-cortical dialogue underlies memory enhancement by emotional association. Neuron 2025, 113, 931-948.e7.

9. Nanou, E.; Catterall, W. A. Calcium channels, synaptic plasticity, and neuropsychiatric disease. Neuron 2018, 98, 466-81.

10. Kim, W.; Lee, K.; Choi, S.; et al. Electrochemiluminescent tactile visual synapse enabling in situ health monitoring. Nat. Mater. 2025, 24, 925-34.

11. Wang, J.; Jiang, Y.; Xiong, T.; et al. Optically modulated nanofluidic ionic transistor for neuromorphic functions. Angew. Chem. Int. Ed. Engl. 2025, 64, e202418949.

12. Wang, X.; Kerckhoffs, A.; Riexinger, J.; et al. ON-OFF nanopores for optical control of transmembrane ionic communication. Nat. Nanotechnol. 2025, 20, 432-40.

13. Hou, Y.; Hou, X. Bioinspired nanofluidic iontronics. Science 2021, 373, 628-9.

14. Xiong, T.; Li, C.; He, X.; et al. Neuromorphic functions with a polyelectrolyte-confined fluidic memristor. Science 2023, 379, 156-61.

15. Zhang, Y.; Liu, L.; Qiao, Y.; Yao, T.; Zhao, X.; Yan, Y. Confinement of ions within graphene oxide membranes enables neuromorphic artificial gustation. Proc. Natl. Acad. Sci. USA. 2025, 122, e2413060122.

16. Bisquert, J. Hysteresis in organic electrochemical transistors: distinction of capacitive and inductive effects. J. Phys. Chem. Lett. 2023, 14, 10951-8.

17. Kamsma, T. M.; Boon, W. Q.; Ter Rele, T.; Spitoni, C.; van Roij, R. Iontronic neuromorphic signaling with conical microfluidic memristors. Phys. Rev. Lett. 2023, 130, 268401.

18. Esfandiar, A.; Radha, B.; Wang, F. C.; et al. Size effect in ion transport through angstrom-scale slits. Science 2017, 358, 511-3.

19. Robin, P.; Kavokine, N.; Bocquet, L. Modeling of emergent memory and voltage spiking in ionic transport through angstrom-scale slits. Science 2021, 373, 687-91.

20. Robin, P.; Emmerich, T.; Ismail, A.; et al. Long-term memory and synapse-like dynamics in two-dimensional nanofluidic channels. Science 2023, 379, 161-7.

21. Li, Y.; Li, N.; Liu, W.; et al. Achieving tissue-level softness on stretchable electronics through a generalizable soft interlayer design. Nat. Commun. 2023, 14, 4488.

22. Keplinger, C.; Sun, J. Y.; Foo, C. C.; Rothemund, P.; Whitesides, G. M.; Suo, Z. Stretchable, transparent, ionic conductors. Science 2013, 341, 984-7.

23. Kim, H. J.; Chen, B.; Suo, Z.; Hayward, R. C. Ionoelastomer junctions between polymer networks of fixed anions and cations. Science 2020, 367, 773-6.

24. Zhang, Z.; Sabbagh, B.; Chen, Y.; Yossifon, G. Geometrically scalable iontronic memristors: employing bipolar polyelectrolyte gels for neuromorphic systems. ACS. Nano. 2024, 18, 15025-34.

25. Chen, W.; Zhai, L.; Zhang, S.; et al. Cascade-heterogated biphasic gel iontronics for electronic-to-multi-ionic signal transmission. Science 2023, 382, 559-65.

26. Zhang, Y.; Tan, C. M. J.; Toepfer, C. N.; Lu, X.; Bayley, H. Microscale droplet assembly enables biocompatible multifunctional modular iontronics. Science 2024, 386, 1024-30.

27. Wang, M.; Luo, Y.; Wang, T.; et al. Artificial skin perception. Adv. Mater. 2021, 33, e2003014.

28. Hong, S. J.; Lee, Y. R.; Bag, A.; et al. Bio-inspired artificial mechanoreceptors with built-in synaptic functions for intelligent tactile skin. Nat. Mater. 2025, 24, 1100-8.

29. Tian, H.; Wang, C.; Chen, Y.; et al. Optically modulated ionic conductivity in a hydrogel for emulating synaptic functions. Sci. Adv. 2023, 9, eadd6950.

30. Wang, W. S.; Chen, X. L.; Huang, Y. J.; Huang, X.; Zhu, L. Q. Bionic visual-auditory perceptual system based on ionotronic neuromorphic transistor for information encryption and decryption with sound recognition functions. Adv. Elect. Mater. 2024, 11, 2400642.

31. Lu, L.; Liu, X.; Gu, P.; et al. Stretchable all-gel organic electrochemical transistors. Nat. Commun. 2025, 16, 3831.

32. Wang, S.; Chen, X.; Zhao, C.; et al. An organic electrochemical transistor for multi-modal sensing, memory and processing. Nat. Electron. 2023, 6, 281-91.

33. Schmidgall, S.; Ziaei, R.; Achterberg, J.; Kirsch, L.; Hajiseyedrazi, S. P.; Eshraghian, J. Brain-inspired learning in artificial neural networks: a review. APL. Machine. Learning. 2024, 2, 021501.

34. Li, Z.; Myers, S. K.; Xiao, J.; et al. Neuromorphic ionic computing in droplet interface synapses. Sci. Adv. 2025, 11, eadv6603.

35. Zhong, Z.; Zhuang, Y.; Cheng, X.; et al. Ionic-electronic photodetector for vision assistance with in-sensor image processing. Nat. Commun. 2025, 16, 7096.

36. Choi, Y.; Jin, P.; Lee, S.; et al. All-printed chip-less wearable neuromorphic system for multimodal physicochemical health monitoring. Nat. Commun. 2025, 16, 5689.

37. Harikesh, P. C.; Yang, C. Y.; Tu, D.; et al. Organic electrochemical neurons and synapses with ion mediated spiking. Nat. Commun. 2022, 13, 901.

38. He, K.; Wang, C.; He, Y.; Su, J.; Chen, X. Artificial neuron devices. Chem. Rev. 2023, 123, 13796-865.

39. Kweon, H.; Kim, J. S.; Kim, S.; et al. Ion trap and release dynamics enables nonintrusive tactile augmentation in monolithic sensory neuron. Sci. Adv. 2023, 9, eadi3827.

40. Guo, R.; Feng, Q.; Ma, K.; et al. Memsensing by surface ion migration within Debye length. Nat. Mater. 2026, 25, 18-25.

41. Hodgkin, A.; Huxley, A. A quantitative description of membrane current and its application to conduction and excitation in nerve. Bull. Math. Biol. 1990, 52, 25-71.

42. Wen, L.; Zhang, X.; Tian, Y.; Jiang, L. Quantum-confined superfluid: From nature to artificial. Sci. China. Mater. 2018, 61, 1027-32.