REFERENCES

1. Dudai, Y.; Karni, A.; Born, J. The consolidation and transformation of memory. Neuron 2015, 88, 20-32.

2. McGaugh, J. L. Memory - a century of consolidation. Science 2000, 287, 248-51.

3. Josselyn, S. A.; Tonegawa, S. Memory engrams: recalling the past and imagining the future. Science 2020, 367.

4. Zidan, M. A.; Strachan, J. P.; Lu, W. D. The future of electronics based on memristive systems. Nat. Electron. 2018, 1, 22-9.

5. Li, C.; Belkin, D.; Li, Y.; et al. Efficient and self-adaptive in-situ learning in multilayer memristor neural networks. Nat. Commun. 2018, 9, 2385.

6. Zhong, Y.; Tang, J.; Li, X.; Gao, B.; Qian, H.; Wu, H. Dynamic memristor-based reservoir computing for high-efficiency temporal signal processing. Nat. Commun. 2021, 12, 408.

7. Chen, Y.; Han, B.; Gobbi, M.; Hou, L.; Samorì, P. Responsive molecules for organic neuromorphic devices: harnessing memory diversification. Adv. Mater. 2025, 37, e2418281.

8. Titley, H. K.; Brunel, N.; Hansel, C. Toward a neurocentric view of learning. Neuron 2017, 95, 19-32.

9. Magistretti, P. J.; Allaman, I. Lactate in the brain: from metabolic end-product to signalling molecule. Nat. Rev. Neurosci. 2018, 19, 235-49.

10. He, K.; Wang, C.; He, Y.; Su, J.; Chen, X. Artificial neuron devices. Chem. Rev. 2023, 123, 13796-865.

11. Harikesh, P. C.; Tu, D.; Fabiano, S. Organic electrochemical neurons for neuromorphic perception. Nat. Electron. 2024, 7, 525-36.

12. Sung, M. J.; Kim, K. N.; Kim, C.; et al. Organic artificial nerves: neuromorphic robotics and bioelectronics. Chem. Rev. 2025, 125, 2625-64.

13. Xiong, T.; Li, C.; He, X.; et al. Neuromorphic functions with a polyelectrolyte-confined fluidic memristor. Science 2023, 379, 156-61.

14. Robin, P.; Emmerich, T.; Ismail, A.; et al. Long-term memory and synapse-like dynamics in two-dimensional nanofluidic channels. Science 2023, 379, 161-7.

15. Emmerich, T.; Teng, Y.; Ronceray, N.; et al. Nanofluidic logic with mechano-ionic memristive switches. Nat. Electron. 2024, 7, 271-8.

16. Xiao, Y.; Sun, W.; Gao, C.; et al. Neural functions enabled by a polarity-switchable nanofluidic memristor. Nano. Lett. 2024, 24, 12515-21.

17. Song, R.; Wang, P.; Zeng, H.; et al. Nanofluidic memristive transition and synaptic emulation in atomically thin pores. Nano. Lett. 2025, 25, 5646-55.

18. Wang, Y.; Jian, B.; Ling, Y.; et al. Bioinspired nanofluidic circuits with integrating excitatory and inhibitory synapses. Nano. Lett. 2025, 25, 2298-306.

19. Chen, X.; Marks, A.; Paulsen, B. D.; et al. n-type rigid semiconducting polymers bearing oligo(ethylene glycol) side chains for high-performance organic electrochemical transistors. Angew. Chem. Int. Ed. Engl. 2021, 60, 9368-73.

20. Harikesh, P. C.; Yang, C. Y.; Wu, H. Y.; et al. Ion-tunable antiambipolarity in mixed ion-electron conducting polymers enables biorealistic organic electrochemical neurons. Nat. Mater. 2023, 22, 242-8.

21. Huang, W.; Chen, J.; Yao, Y.; et al. Vertical organic electrochemical transistors for complementary circuits. Nature 2023, 613, 496-502.

22. Song, J.; Liu, H.; Zhao, Z.; et al. 2D metal-organic frameworks for ultraflexible electrochemical transistors with high transconductance and fast response speeds. Sci. Adv. 2023, 9, eadd9627.

23. Cucchi, M.; Parker, D.; Stavrinidou, E.; Gkoupidenis, P.; Kleemann, H. In liquido computation with electrochemical transistors and mixed conductors for intelligent bioelectronics. Adv. Mater. 2023, 35, e2209516.

24. Ding, B.; Kim, G.; Kim, Y.; et al. Influence of backbone curvature on the organic electrochemical transistor performance of glycolated donor-acceptor conjugated polymers. Angew. Chem. Int. Ed. Engl. 2021, 60, 19679-84.

25. Laswick, Z.; Wu, X.; Surendran, A.; et al. Tunable anti-ambipolar vertical bilayer organic electrochemical transistor enable neuromorphic retinal pathway. Nat. Commun. 2024, 15, 6309.

26. Lobosco, A.; Lubrano, C.; Rana, D.; et al. Enzyme-mediated organic neurohybrid synapses. Adv. Mater. 2024, 36, e2409614.

27. Matrone, G. M.; van Doremaele, E. R. W.; Surendran, A.; et al. A modular organic neuromorphic spiking circuit for retina-inspired sensory coding and neurotransmitter-mediated neural pathways. Nat. Commun. 2024, 15, 2868.

28. Wang, S.; Wang, Y.; Cai, X.; et al. A high-frequency artificial nerve based on homogeneously integrated organic electrochemical transistors. Nat. Electron. 2025, 8, 254-66.

29. Liu, X.; Dai, S.; Zhao, W.; et al. All-photolithography fabrication of ion-gated flexible organic transistor array for multimode neuromorphic computing. Adv. Mater. 2024, 36, e2312473.

30. Liu, R.; He, Y.; Zhu, X.; et al. Hardware-feasible and efficient n-type organic neuromorphic signal recognition via reservoir computing. Adv. Mater. 2025, 37, e2409258.

31. Wang, C.; Wang, Y.; Kirlikovali, K. O.; et al. Ultrafine silver nanoparticle encapsulated porous molecular traps for discriminative photoelectrochemical detection of mustard gas simulants by synergistic size-exclusion and site-specific recognition. Adv. Mater. 2022, 34, e2202287.

32. Huang, H.; Li, Z.; Li, Z.; et al. Photoelectrochemical lithium extraction. Nano. Energy. 2023, 115, 108683.

33. Huang, C.; Xiong, P.; Lai, X.; Xu, H. Photoelectrochemical asymmetric catalysis. Nat. Catal. 2024, 7, 1250-4.

34. Gu, S.; Xu, D.; Huang, J.; Zhou, X.; Liu, Y.; Zhang, Z. Photoelectrochemical biosensor with single atom sites for norepinephrine sensing and brain region synergy in epilepsy. Nat. Commun. 2025, 16, 4765.

35. Corrado, F.; Bruno, U.; Prato, M.; et al. Azobenzene-based optoelectronic transistors for neurohybrid building blocks. Nat. Commun. 2023, 14, 6760.

36. Druet, V.; Ohayon, D.; Petoukhoff, C. E.; et al. A single n-type semiconducting polymer-based photo-electrochemical transistor. Nat. Commun. 2023, 14, 5481.

37. Li, Z.; Chen, M. H.; Wu, Q. Q.; et al. A metal-organic framework neuron. Natl. Sci. Rev. 2025, 12, nwaf213.

38. Yuan, C.; Xu, K. X.; Huang, Y. T.; Xu, J. J.; Zhao, W. W. An aquatic autonomic nervous system. Adv. Mater. 2024, 36, e2407654.

39. Gao, C.; Liu, D.; Xu, C.; et al. Feedforward photoadaptive organic neuromorphic transistor with mixed‐weight plasticity for augmenting perception. Adv. Funct. Mater. 2024, 34, 2313217.

40. Wu, J.; Wang, X.; Tang, X.; et al. Low-power and multimodal organic photoelectric synaptic transistors modulated by photoisomerization for UV damage perception and artificial visual recognition. Adv. Funct. Mater. 2025, 35, 2420073.

41. Wang, Y.; Shan, W.; Li, H.; et al. An optoelectrochemical synapse based on a single-component n-type mixed conductor. Nat. Commun. 2025, 16, 1615.

42. Braun, E. K.; Wimmer, G. E.; Shohamy, D. Retroactive and graded prioritization of memory by reward. Nat. Commun. 2018, 9, 4886.

43. Pedamonti, D.; Mohinta, S.; Dimitrov, M. V.; Malagon-Vina, H.; Ciocchi, S.; Costa, R. P. Hippocampus supports multi-task reinforcement learning under partial observability. Nat. Commun. 2025, 16, 9619.

44. Golden, C. E. M.; Martin, A. C.; Kaur, D.; et al. Estrogen modulates reward prediction errors and reinforcement learning. Nat. Neurosci. 2025, 28, 2502-14.

45. Mnih, V.; Kavukcuoglu, K.; Silver, D.; et al. Human-level control through deep reinforcement learning. Nature 2015, 518, 529-33.

46. Sarwat, S. G.; Moraitis, T.; Wright, C. D.; Bhaskaran, H. Chalcogenide optomemristors for multi-factor neuromorphic computation. Nat. Commun. 2022, 13, 2247.

47. Romero Pinto, S.; Uchida, N. Tonic dopamine and biases in value learning linked through a biologically inspired reinforcement learning model. Nat. Commun. 2025, 16, 7529.

48. Weilenmann, C.; Ziogas, A. N.; Zellweger, T.; et al. Single neuromorphic memristor closely emulates multiple synaptic mechanisms for energy efficient neural networks. Nat. Commun. 2024, 15, 6898.

49. Wang, Z.; Li, C.; Song, W.; et al. Reinforcement learning with analogue memristor arrays. Nat. Electron. 2019, 2, 115-24.

50. Xia, Q.; Yang, J. J. Memristive crossbar arrays for brain-inspired computing. Nat. Mater. 2019, 18, 309-23.

51. Tomov, M. S.; Schulz, E.; Gershman, S. J. Multi-task reinforcement learning in humans. Nat. Hum. Behav. 2021, 5, 764-73.

52. Zhou, Y.; Wang, Y.; Zhuge, F.; et al. A reconfigurable two-WSe2 -transistor synaptic cell for reinforcement learning. Adv. Mater. 2022, 34, e2107754.

53. Li, Z.; Myers, S. K.; Xiao, J.; et al. Neuromorphic ionic computing in droplet interface synapses. Sci. Adv. 2025, 11, eadv6603.

54. Im, J.; Kim, J.; Ko, J.; et al. Hybrid functional 3D artificial synapses for convolution and reinforcement learning. Sci. Adv. 2025, 11, eadw7498.

55. Kunz, L.; Staresina, B. P.; Reinacher, P. C.; et al. Ripple-locked coactivity of stimulus-specific neurons and human associative memory. Nat. Neurosci. 2024, 27, 587-99.

56. Wang, R. Physiological implications of hydrogen sulfide: a whiff exploration that blossomed. Physiol. Rev. 2012, 92, 791-896.

57. Butterfield, D. A.; Halliwell, B. Oxidative stress, dysfunctional glucose metabolism and Alzheimer disease. Nat. Rev. Neurosci. 2019, 20, 148-60.

58. Wang, S.; Zhu, B.; Liu, M.; Zhang, L.; Yu, J.; Zhou, M. Direct Z-scheme ZnO/CdS hierarchical photocatalyst for enhanced photocatalytic H2-production activity. Appl. Catal. B:. Environ. 2019, 243, 19-26.

59. Kandel, E. R. The molecular biology of memory storage: a dialogue between genes and synapses. Science 2001, 294, 1030-8.

60. Mills, F.; Globa, A. K.; Liu, S.; et al. Cadherins mediate cocaine-induced synaptic plasticity and behavioral conditioning. Nat. Neurosci. 2017, 20, 540-9.

61. Olin-Ammentorp, W.; Sokolov, Y.; Bazhenov, M. A dual-memory architecture for reinforcement learning on neuromorphic platforms. Neuromorph. Comput. Eng. 2021, 1, 024003.