REFERENCES
1. Gao, L.; Wang, M.; Wang, W.; et al. Highly sensitive pseudocapacitive iontronic pressure sensor with broad sensing range. Nanomicro. Lett. 2021, 13, 140.
2. Liu, Z.; Cai, M.; Hong, S.; et al. Data-driven inverse design of flexible pressure sensors. Proc. Natl. Acad. Sci. U. S. A. 2024, 121, e2320222121.
3. Niu, H.; Li, H.; Gao, S.; et al. Perception-to-cognition tactile sensing based on artificial-intelligence-motivated human full-skin bionic electronic skin. Adv. Mater. 2022, 34, e2202622.
4. Dai, C.; Ye, C.; Ren, J.; et al. Humanoid ionotronic skin for smart object recognition and sorting. ACS. Mater. Lett. 2022, 5, 189-201.
5. Chang, Y.; Wang, L.; Li, R.; et al. First decade of interfacial iontronic sensing: from droplet sensors to artificial skins. Adv. Mater. 2021, 33, e2003464.
6. Niu, H.; Li, H.; Li, N.; et al. Morphological-engineering-based capacitive tactile sensors. Appl. Phys. Rev. 2025, 12, 011319.
7. Li, Y.; Bai, N.; Chang, Y.; et al. Flexible iontronic sensing. Chem. Soc. Rev. 2025, 54, 4651-700.
8. Wu, J. Understanding the electric double-layer structure, capacitance, and charging dynamics. Chem. Rev. 2022, 122, 10821-59.
9. Li, B.; Ge, R.; Du, W.; et al. iWood: an intelligent iontronic device for human-wood interactions. Adv. Funct. Mater. 2024, 34, 2314190.
10. Cao, X.; Cha, S.; Gong, M. Interfacial electrical double layer in electrocatalytic reactions: fundamentals, characterizations and applications. Acta. Physico-Chimica. Sinica. 2025, 41, 100041.
11. He, Y.; Cheng, Y.; Yang, C.; Guo, C. F. Creep-free polyelectrolyte elastomer for drift-free iontronic sensing. Nat. Mater. 2024, 23, 1107-14.
12. Yang, C.; Guo, C. F. Drift-free iontronic sensing enabled by a creep-free polyelectrolyte elastomer. Nat. Mater. 2024, 23, 1025-6.
13. Omura, J.; Yano, H.; Watanabe, M.; Uchida, H. Electrochemical quartz crystal microbalance analysis of the oxygen reduction reaction on Pt-based electrodes. Part 1: Effect of adsorbed anions on the oxygen reduction activities of Pt in HF, HClO4, and H2SO4 solutions. Langmuir 2011, 27, 6464-70.
14. Wang, T.; Zhang, Y.; Huang, B.; et al. Enhancing oxygen reduction electrocatalysis by tuning interfacial hydrogen bonds. Nat. Catal. 2021, 4, 753-62.
15. Li, P.; Jiang, Y.; Hu, Y.; et al. Hydrogen bond network connectivity in the electric double layer dominates the kinetic pH effect in hydrogen electrocatalysis on Pt. Nat. Catal. 2022, 5, 900-11.
16. Wei, D.; Guo, J.; Qiu, Y.; et al. Monitoring the delicate operations of surgical robots via ultra-sensitive ionic electronic skin. Natl. Sci. Rev. 2022, 9, nwac227.
17. Su, Q.; Zou, Q.; Li, Y.; et al. A stretchable and strain-unperturbed pressure sensor for motion interference-free tactile monitoring on skins. Sci. Adv. 2021, 7, eabi4563.
18. Li, N.; Li, H.; Feng, J.; et al. Microstructure-modulated linear-response flexible pressure sensors. Adv. Funct. Mater. 2025, e09776.
19. Shi, J.; Dai, Y.; Cheng, Y.; et al. Embedment of sensing elements for robust, highly sensitive, and cross-talk-free iontronic skins for robotics applications. Sci. Adv. 2023, 9, eadf8831.
20. Sun, C.; Li, S.; Zhou, Z.; et al. Conformal iontronic sensing clear aligner. Adv. Funct. Mater. 2024, 34, 2408376.
21. Wang, H. L.; Guo, Z. H.; Pu, X.; Wang, Z. L. Ultralight iontronic triboelectric mechanoreceptor with high specific outputs for epidermal electronics. Nanomicro. Lett. 2022, 14, 86.
22. Bedrov, D.; Piquemal, J. P.; Borodin, O.; MacKerell AD, J. R.; Roux, B.; Schröder, C. Molecular dynamics simulations of ionic liquids and electrolytes using polarizable force fields. Chem. Rev. 2019, 119, 7940-95.
23. Borodin, O.; Smith, G. D. Mechanism of ion transport in amorphous poly(ethylene oxide)/LiTFSI from molecular dynamics simulations. Macromolecules 2006, 39, 1620-9.
24. Warren, A.; Zhang, D.; Choudhury, S.; Archer, L. A. Electrokinetics in viscoelastic liquid electrolytes above the diffusion limit. Macromolecules 2019, 52, 4666-72.
25. Wu, Z.; Cheng, Y.; Yang, Z.; et al. Ultra-sensitive and high-resolution flexible iontronic humidity sensor for detecting subtle moisture differences. Adv. Funct. Mater. 2025, e17569.
26. Xu, X.; Lu, D.; Huang, S.; Wang, F.; Min, Y.; Xu, Q. Multiscale insights into inorganic filler regulation, ion transport mechanisms, and characterization advances in composite solid-state electrolytes. Processes 2025, 13, 2795.
27. Zhu, P.; Yan, C.; Dirican, M.; et al. Li0.33La0.557TiO3 ceramic nanofiber-enhanced polyethylene oxide-based composite polymer electrolytes for all-solid-state lithium batteries. J. Mater. Chem. A. 2018, 6, 4279-85.
28. Sun, Y.; Cheng, Y.; Shi, L.; Sun, J.; Chen, S.; Wang, R. Dual ion regulated eutectogels with high elasticity and adhesive strength for accurate strain sensors. Adv. Funct. Mater. 2024, 34, 2401808.
29. Li, C.; Cheng, J.; He, Y.; et al. Polyelectrolyte elastomer-based ionotronic sensors with multi-mode sensing capabilities via multi-material 3D printing. Nat. Commun. 2023, 14, 4853.
30. Qiu, Z.; Wan, Y.; Zhou, W.; et al. Ionic skin with biomimetic dielectric layer templated from calathea zebrine leaf. Adv. Funct. Mater. 2018, 28, 1802343.
32. Zheng, Z. J.; Yu, J. A generalized maugis model for adhesive contact of arbitrary axisymmetric elastic objects. Chin. J. Mech. 2007, 23, 382-88.
33. Bai, N.; Wang, L.; Wang, Q.; et al. Graded intrafillable architecture-based iontronic pressure sensor with ultra-broad-range high sensitivity. Nat. Commun. 2020, 11, 209.
34. Bai, N.; Wang, L.; Xue, Y.; et al. Graded interlocks for iontronic pressure sensors with high sensitivity and high linearity over a broad range. ACS. Nano. 2022, 16, 4338-47.
35. Li, P.; Xie, L.; Su, M.; et al. Skin-inspired large area iontronic pressure sensor with ultra-broad range and high sensitivity. Nano. Energy. 2022, 101, 107571.


