REFERENCES
1. Rodriguez-Martinez H, Martinez EA, Calvete JJ, Peña Vega FJ, Roca J. Seminal plasma: relevant for fertility? Int J Mol Sci. 2021;22:4368.
2. Andrade AFC, Knox RV, Torres MA, Pavaneli APP. What is the relevance of seminal plasma from a functional and preservation perspective? Anim Reprod Sci. 2022;246:106946.
3. Viana AGA, Ribeiro IM, Carvalho RPR, Memili E, Moura AA, Machado-Neves M. Contributions of seminal plasma proteins to fertilizing ability of bull sperm: a meta-analytical review. Andrologia. 2022;54:e14615.
4. Shen Q, Wu X, Chen J, et al. Immune regulation of seminal plasma on the endometrial microenvironment: physiological and pathological conditions. Int J Mol Sci. 2023;24:14639.
5. Lyons HE, Arman BM, Robertson SA, Sharkey DJ. Immune regulatory cytokines in seminal plasma of healthy men: a scoping review and analysis of variance. Andrology. 2023;11:1245-66.
6. Mostafa T, Rashed LA, Osman I, Marawan M. Seminal plasma oxytocin and oxidative stress levels in infertile men with varicocele. Andrologia. 2015;47:209-13.
7. Padilla L, López-Arjona M, Martinez-Subiela S, Rodriguez-Martinez H, Roca J, Barranco I. Oxytocin in pig seminal plasma is positively related with in vivo fertility of inseminated sows. J Anim Sci Biotechnol. 2021;12:101.
8. Andersen JM, Herning H, Witczak O, Haugen TB. Anti-Müllerian hormone in seminal plasma and serum: association with sperm count and sperm motility. Hum Reprod. 2016;31:1662-7.
9. Stadler B, Whittaker MR, Exintaris B, Middendorff R. Oxytocin in the male reproductive tract; the therapeutic potential of oxytocin-agonists and-antagonists. Front Endocrinol. 2020;11:565731.
10. Ferreira JJ, Butler A, Stewart R, et al. Oxytocin can regulate myometrial smooth muscle excitability by inhibiting the Na+ -activated K+ channel, Slo2.1. J Physiol. 2019;597:137-49.
11. King ME, McKelvey WA, Dingwall WS, et al. Lambing rates and litter sizes following intrauterine or cervical insemination of frozen/thawed semen with or without oxytocin administration. Theriogenology. 2004;62:1236-44.
12. Goverde HJ, Bisseling JG, Wetzels AM, et al. A neuropeptide in human semen: oxytocin. Arch Androl. 1998;41:17-22.
13. Arrowsmith S, Wray S. Oxytocin: its mechanism of action and receptor signalling in the myometrium. J Neuroendocrinol. 2014;26:356-69.
14. Hensel B, Schulze M. Transport-related influences on the quality of liquid-preserved boar sperm: a review. Anim Reprod Sci. 2025;272:107657.
15. Perez-Patiño C, Barranco I, Parrilla I, et al. Characterization of the porcine seminal plasma proteome comparing ejaculate portions. J Proteomics. 2016;142:15-23.
16. Aiello A, Giannessi F, Percario ZA, Affabris E. An emerging interplay between extracellular vesicles and cytokines. Cytokine Growth Factor Rev. 2020;51:49-60.
17. van Niel G, D’Angelo G, Raposo G. Shedding light on the cell biology of extracellular vesicles. Nat Rev Mol Cell Biol. 2018;19:213-28.
18. Skalnikova HK, Bohuslavova B, Turnovcova K, et al. Isolation and characterization of small extracellular vesicles from porcine blood plasma, cerebrospinal fluid, and seminal plasma. Proteomes. 2019;7:17.
19. Fazeli A, Godakumara K, Kodithuwakku S, Muhandiram S. Extracellular vesicles in reproduction: biology, production, and potential applications in livestock breeding. Reprod Domest Anim. 2025;60:e70112.
20. Machtinger R, Laurent LC, Baccarelli AA. Extracellular vesicles: roles in gamete maturation, fertilization and embryo implantation. Hum Reprod Update. 2016;22:182-93.
21. Jiang NX, Li XL. The complicated effects of extracellular vesicles and their cargos on embryo implantation. Front Endocrinol. 2021;12:681266.
22. Bae SE, Watson ED. A light microscopic and ultrastructural study on the presence and location of oxytocin in the equine endometrium. Theriogenology. 2003;60:909-21.
23. Walters EM, Wells KD, Bryda EC, Schommer S, Prather RS. Swine models, genomic tools and services to enhance our understanding of human health and diseases. Lab Anim. 2017;46:167-72.
24. Zigo M, Maňásková-Postlerová P, Zuidema D, et al. Porcine model for the study of sperm capacitation, fertilization and male fertility. Cell Tissue Res. 2020;380:237-62.
25. Rodríguez-Martínez H, Kvist U, Saravia F, et al. The physiological roles of the boar ejaculate. Soc Reprod Fertil Suppl. 2009;66:1-21.
26. Maside C, Recuero S, Salas-Huetos A, Ribas-Maynou J, Yeste M. Animal board invited review: an update on the methods for semen quality evaluation in swine - from farm to the lab. Animal. 2023;17:100720.
27. Martínez-díaz P, Parra A, Sanchez-lópez CM, et al. A size-exclusion chromatography-based procedure for isolating extracellular vesicle subsets from porcine seminal plasma. Methods Mol Biol. 2025;2897:601-9.
28. Welsh JA, Goberdhan DCI, O’Driscoll L, et al; MISEV Consortium. Minimal information for studies of extracellular vesicles (MISEV2023): from basic to advanced approaches. J Extracell Vesicles. 2024;13:e12404.
29. Parra A, Barranco I, Martínez-Díaz P, et al. Cryogenic electron microscopy reveals morphologically distinct subtypes of extracellular vesicles among porcine ejaculate fractions. Sci Rep. 2024;14:16175.
30. Welsh JA, Van Der Pol E, Arkesteijn GJA, et al. MIFlowCyt-EV: a framework for standardized reporting of extracellular vesicle flow cytometry experiments. J Extracell Vesicles. 2020;9:1713526.
31. López-Arjona M, Mateo SV, Manteca X, Escribano D, Cerón JJ, Martínez-Subiela S. Oxytocin in saliva of pigs: an assay for its measurement and changes after farrowing. Domest Anim Endocrinol. 2020;70:106384.
32. Das Gupta A, Krawczynska N, Nelson ER. Extracellular vesicles-the next frontier in endocrinology. Endocrinology. 2021;162:bqab133.
33. González-Blanco C, Iglesias-Fortes S, Lockwood ÁC, Figaredo C, Vitulli D, Guillén C. The role of extracellular vesicles in metabolic diseases. Biomedicines. 2024;12:992.
34. Salomon C, Das S, Erdbrügger U, et al. Extracellular vesicles and their emerging roles as cellular messengers in endocrinology: an endocrine society scientific statement. Endocr Rev. 2022;43:441-68.
35. Liu N, Yang H, Han L, Ma M. Oxytocin in women’s health and disease. Front Endocrinol. 2022;13:786271.
36. Rosa-Fernandes L, Rocha VB, Carregari VC, Urbani A, Palmisano G. A perspective on extracellular vesicles proteomics. Front Chem. 2017;5:102.
37. Rai A, Fang H, Claridge B, Simpson RJ, Greening DW. Proteomic dissection of large extracellular vesicle surfaceome unravels interactive surface platform. J Extracell Vesicles. 2021;10:e12164.
38. Lischnig A, Bergqvist M, Ochiya T, Lässer C. Quantitative proteomics identifies proteins enriched in large and small extracellular vesicles. Mol Cell Proteomics. 2022;21:100273.
39. Singh M, Tiwari PK, Kashyap V, Kumar S. Proteomics of extracellular vesicles: recent updates, challenges and limitations. Proteomes. 2025;13:12.
40. Barranco I, Sanchez-López CM, Bucci D, et al. The proteome of large or small extracellular vesicles in pig seminal plasma differs, defining sources and biological functions. Mol Cell Proteomics. 2023;22:100514.
41. Nienhaus K, Nienhaus GU. Mechanistic understanding of protein corona formation around nanoparticles: old puzzles and new insights. Small. 2023;19:e2301663.
42. Heidarzadeh M, Zarebkohan A, Rahbarghazi R, Sokullu E. Protein corona and exosomes: new challenges and prospects. Cell Commun Signal. 2023;21:64.
43. Lymperi S, Neofytou E, Vaitsopoulou C, et al. Oxytocin preprotein and oxytocin receptor mRNA expression is altered in semen samples with abnormal semen parameters. Reprod Biomed Online. 2023;46:363-70.
44. Wolf M, Poupardin RW, Ebner-Peking P, et al. A functional corona around extracellular vesicles enhances angiogenesis, skin regeneration and immunomodulation. J Extracell Vesicles. 2022;11:e12207.
45. Dietz L, Oberländer J, Mateos-Maroto A, et al. Uptake of extracellular vesicles into immune cells is enhanced by the protein corona. J Extracell Vesicles. 2023;12:e12399.
46. Okazaki T, Ikoma E, Tinen T, Akiyoshi T, Mori M, Teshima H. Addition of oxytocin to semen extender improves both sperm transport to the oviduct and conception rates in pigs following AI. Anim Sci J. 2014;85:8-14.
47. Martínez-Hernández J, Garriga F, Ahmad A, et al. The oxytocin receptor in spermatozoa may originate from both spermatogenesis and epididymal maturation, and regulates capacitation. Andrology. 2025;Epub ahead of print.
48. Al-Suhaimi E, AlQuwaie R, AlSaqabi R, et al. Hormonal orchestra: mastering mitochondria’s role in health and disease. Endocrine. 2024;86:903-29.
49. Adi YK, Taechamaeteekul P, Kesdangsakonwut S, Tienthai P, Kirkwood RN, Tummaruk P. Exploring hyperprolific sows: a study of gross morphology of reproductive organs and oxytocin receptor distribution across parities. Animals. 2024;14:1846.
50. Kunz G, Beil D, Huppert P, Leyendecker G. Oxytocin--a stimulator of directed sperm transport in humans. Reprod Biomed Online. 2007;14:32-9.
51. Wildt L, Kissler S, Licht P, Becker W. Sperm transport in the human female genital tract and its modulation by oxytocin as assessed by hysterosalpingoscintigraphy, hysterotonography, electrohysterography and Doppler sonography. Hum Reprod Update. 1998;4:655-66.
52. Pierzynski P. Oxytocin and vasopressin V1A receptors as new therapeutic targets in assisted reproduction. Reprod Biomed Online. 2011;22:9-16.
53. Griesinger G, Blockeel C, Pierzynski P, et al. Effect of the oxytocin receptor antagonist nolasiban on pregnancy rates in women undergoing embryo transfer following IVF: analysis of three randomised clinical trials. Hum Reprod. 2021;36:1007-20.







