REFERENCES

1. Vechetti IJ Jr, Peck BD, Wen Y, et al. Mechanical overload-induced muscle-derived extracellular vesicles promote adipose tissue lipolysis. FASEB J. 2021;35:e21644.

2. Burke BI, Ismaeel A, Long DE, et al. Extracellular vesicle transfer of miR-1 to adipose tissue modifies lipolytic pathways following resistance exercise. JCI Insight. 2024;9:e182589.

3. McIlvenna LC, Parker HJ, Seabright AP, et al. Single vesicle analysis reveals the release of tetraspanin positive extracellular vesicles into circulation with high intensity intermittent exercise. J Physiol. 2023;601:5093-106.

4. Whitham M, Parker BL, Friedrichsen M, et al. Extracellular vesicles provide a means for tissue crosstalk during exercise. Cell Metab. 2018;27:237-51.e4.

5. Brahmer A, Neuberger E, Esch-Heisser L, et al. Platelets, endothelial cells and leukocytes contribute to the exercise-triggered release of extracellular vesicles into the circulation. J Extracell Vesicles. 2019;8:1615820.

6. Oliveira GP Jr, Porto WF, Palu CC, et al. Effects of acute aerobic exercise on rats serum extracellular vesicles diameter, concentration and small RNAs content. Front Physiol. 2018;9:532.

7. Guescini M, Canonico B, Lucertini F, et al. Muscle releases alpha-sarcoglycan positive extracellular vesicles carrying miRNAs in the bloodstream. PLoS One. 2015;10:e0125094.

8. Bei Y, Xu T, Lv D, et al. Exercise-induced circulating extracellular vesicles protect against cardiac ischemia-reperfusion injury. Basic Res Cardiol. 2017;112:38.

9. Conkright WR, Kargl CK, Hubal MJ, et al. Acute resistance exercise modifies extracellular vesicle miRNAs targeting anabolic gene pathways: a prospective cohort study. Med Sci Sports Exerc. 2024;56:1225-32.

10. Vechetti IJ Jr, Valentino T, Mobley CB, McCarthy JJ. The role of extracellular vesicles in skeletal muscle and systematic adaptation to exercise. J Physiol. 2021;599:845-61.

11. Wang Y, Liu Y, Zhang S, et al. Exercise improves metabolism and alleviates atherosclerosis via muscle-derived extracellular vesicles. Aging Dis. 2023;14:952-65.

12. Ma S, Xing X, Huang H, et al. Skeletal muscle-derived extracellular vesicles transport glycolytic enzymes to mediate muscle-to-bone crosstalk. Cell Metab. 2023;35:2028-43.e7.

13. Liu Y, Zhou R, Guo Y, et al. Muscle-derived small extracellular vesicles induce liver fibrosis during overtraining. Cell Metab. 2025;37:824-41.e8.

14. Burke BI, Ismaeel A, McCarthy JJ. The utility of the rodent synergist ablation model in identifying molecular and cellular mechanisms of skeletal muscle hypertrophy. Am J Physiol Cell Physiol. 2024;327:C601-6.

15. Burke BI, Ismaeel A, von Walden F, Murach KA, McCarthy JJ. Skeletal muscle hypertrophy: cell growth is cell growth. Am J Physiol Cell Physiol. 2024;327:C614-8.

16. Braschler L, Nikolaidis PT, Thuany M, et al. Physiology and pathophysiology of marathon running: a narrative review. Sports Med Open. 2025;11:10.

17. Mieszkowski J, Stankiewicz BE, Kochanowicz A, et al. Remote ischemic preconditioning reduces marathon-induced oxidative stress and decreases liver and heart injury markers in the serum. Front Physiol. 2021;12:731889.

18. Castaño C, Mirasierra M, Vallejo M, Novials A, Párrizas M. Delivery of muscle-derived exosomal miRNAs induced by HIIT improves insulin sensitivity through down-regulation of hepatic FoxO1 in mice. Proc Natl Acad Sci U S A. 2020;117:30335-43.

19. Flockhart M, Nilsson LC, Tais S, Ekblom B, Apró W, Larsen FJ. Excessive exercise training causes mitochondrial functional impairment and decreases glucose tolerance in healthy volunteers. Cell Metab. 2021;33:957-70.e6.

20. Couch Y, Buzàs EI, Di Vizio D, et al. A brief history of nearly EV-erything - the rise and rise of extracellular vesicles. J Extracell Vesicles. 2021;10:e12144.

Extracellular Vesicles and Circulating Nucleic Acids
ISSN 2767-6641 (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/