REFERENCES

1. Witwer KW, Buzás EI, Bemis LT, et al. Standardization of sample collection, isolation and analysis methods in extracellular vesicle research. J Extracell Vesicles. 2013;2:20360.

2. Shah R, Patel T, Freedman JE. Circulating extracellular vesicles in human disease. N Engl J Med. 2018;379:958-66.

3. Cable J, Witwer KW, Coffey RJ, et al. Exosomes, microvesicles, and other extracellular vesicles-a Keystone Symposia report. Ann N Y Acad Sci. 2023;1523:24-37.

4. Castaño C, Novials A, Párrizas M. An overview of inter-tissue and inter-kingdom communication mediated by extracellular vesicles in the regulation of mammalian metabolism. Int J Mol Sci. 2023;24:2071.

5. Nation GK, Saffold CE, Pua HH. Secret messengers: extracellular RNA communication in the immune system. Immunol Rev. 2021;304:62-76.

6. Phillips W, Willms E, Hill AF. Understanding extracellular vesicle and nanoparticle heterogeneity: novel methods and considerations. Proteomics. 2021;21:e2000118.

7. Hermann S, Buschmann D, Kirchner B, et al. Transcriptomic profiling of cell-free and vesicular microRNAs from matched arterial and venous sera. J Extracell Vesicles. 2019;8:1670935.

8. Yang D, Singh A, Wu H, Kroe-Barrett R. Determination of high-affinity antibody-antigen binding kinetics using four biosensor platforms. J Vis Exp. 2017;122:55659.

9. Gool EL, Stojanovic I, Schasfoort RBM, et al. Surface plasmon resonance is an analytically sensitive method for antigen profiling of extracellular vesicles. Clin Chem. 2017;63:1633-41.

10. Rikkert LG, de Rond L, van Dam A, et al. Detection of extracellular vesicles in plasma and urine of prostate cancer patients by flow cytometry and surface plasmon resonance imaging. PLoS One. 2020;15:e0233443.

11. Tallon C, Picciolini S, Yoo SW, et al. Inhibition of neutral sphingomyelinase 2 reduces extracellular vesicle release from neurons, oligodendrocytes, and activated microglial cells following acute brain injury. Biochem Pharmacol. 2021;194:114796.

12. Yamasaki T, Miyake S, Nakano S, et al. Development of a surface plasmon resonance-based immunosensor for detection of 10 major O-antigens on Shiga toxin-producing escherichia coli, with a gel displacement technique to remove bound bacteria. Anal Chem. 2016;88:6711-7.

13. Ito T, Kasai Y, Kumagai Y, et al. Quantitative analysis of interaction between CADM1 and its binding cell-surface proteins using surface plasmon resonance imaging. Front Cell Dev Biol. 2018;6:86.

14. Szymanska B, Lukaszewski Z, Oldak L, Zelazowska-Rutkowska B, Hermanowicz-Szamatowicz K, Gorodkiewicz E. Two biosensors for the determination of interleukin-6 in blood plasma by array SPRi. Biosensors. 2022;12:412.

15. Zielinska Z, Oldak L, Kacperczyk-Bartnik J, et al. An array SPRi biosensor for the determination on PARP-1 in blood plasma. Biomedicines. 2023;11:602.

16. Oldak L, Sankiewicz A, Żelazowska-Rutkowska B, et al. Two SPRi biosensors for the determination of cathepsin S in blood plasma. Talanta. 2021;225:121900.

17. Liang K, Liu F, Fan J, et al. Nanoplasmonic quantification of tumor-derived extracellular vesicles in plasma microsamples for diagnosis and treatment monitoring. Nat Biomed Eng. 2017;1:0021.

18. Liu C, Zeng X, An Z, et al. Sensitive detection of exosomal proteins via a compact surface plasmon resonance biosensor for cancer diagnosis. ACS Sens. 2018;3:1471-9.

19. Das S, Devireddy R, Gartia MR. Surface plasmon resonance (SPR) sensor for cancer biomarker detection. Biosensors. 2023;13:396.

20. Baltazar JM, Gu W, Yu Q. Enhancing extracellular vesicle detection via cotargeting tetraspanin biomarkers. Anal Chem. 2024;96:16406-14.

21. Picciolini S, Gualerzi A, Carlomagno C, et al. An SPRi-based biosensor pilot study: analysis of multiple circulating extracellular vesicles and hippocampal volume in Alzheimer’s disease. J Pharm Biomed Anal. 2021;192:113649.

22. Brealey J, Lees R, Tempest R, et al. Shining a light on fluorescent EV dyes: evaluating efficacy, specificity and suitability by nano-flow cytometry. J Extracell Biol. 2024;3:e70006.

23. Yaraki M, Tukova A, Wang Y. Emerging SERS biosensors for the analysis of cells and extracellular vesicles. Nanoscale. 2022;14:15242-68.

24. Zhu L, Wang K, Cui J, et al. Label-free quantitative detection of tumor-derived exosomes through surface plasmon resonance imaging. Anal Chem. 2014;86:8857-64.

25. Li Y, He X, Li Q, et al. EV-origin: enumerating the tissue-cellular origin of circulating extracellular vesicles using exLR profile. Comput Struct Biotechnol J. 2020;18:2851-9.

26. 2021 Diabetes Collaborators. Global, regional, and national burden of diabetes from 1990 to 2021, with projections of prevalence to 2050: a systematic analysis for the Global Burden of Disease Study 2021. Lancet. 2023;402:203-34.

27. Risk Factor Collaboration (NCD-RisC). Worldwide trends in hypertension prevalence and progress in treatment and control from 1990 to 2019: a pooled analysis of 1201 population-representative studies with 104 million participants. Lancet. 2021;398:957-80.

28. Arauna D, Chiva-Blanch G, Padró T, Fuentes E, Palomo I, Badimon L. Frail older adults show a distinct plasma microvesicle profile suggesting a prothrombotic and proinflammatory phenotype. J Cell Physiol. 2021;236:2099-108.

29. Jansen F, Li Q, Pfeifer A, Werner N. Endothelial- and immune cell-derived extracellular vesicles in the regulation of cardiovascular health and disease. JACC Basic Transl Sci. 2017;2:790-807.

30. Araki E, Goto A, Kondo T, et al. Japanese clinical practice guideline for diabetes 2019. J Diabetes Investig. 2020;11:1020-76.

31. Shimamoto K, Ando K, Fujita T, et al; Japanese Society of Hypertension Committee for Guidelines for the Management of Hypertension. The Japanese Society of Hypertension Guidelines for the management of hypertension (JSH 2014). Hypertens Res. 2014;37:253-390.

32. Umemura S, Arima H, Arima S, et al. The Japanese Society of Hypertension Guidelines for the management of hypertension (JSH 2019). Hypertens Res. 2019;42:1235-481.

33. Haneda M, Utsunomiya K, Koya D, et al; Joint Committee on Diabetic Nephropathy. A new classification of diabetic nephropathy 2014: a report from Joint Committee on Diabetic Nephropathy. J Diabetes Investig. 2015;6:242-6.

34. Harada A, Ueshima H, Kinoshita Y, et al; Japan Arteriosclerosis Longitudinal Study Group. Absolute risk score for stroke, myocardial infarction, and all cardiovascular disease: Japan Arteriosclerosis Longitudinal Study. Hypertens Res. 2019;42:567-79.

35. Wang WC, Cummings RD. The immobilized leukoagglutinin from the seeds of Maackia amurensis binds with high affinity to complex-type Asn-linked oligosaccharides containing terminal sialic acid-linked alpha-2,3 to penultimate galactose residues. J Biol Chem. 1988;263:4576-85.

36. Laurent LC, Abdel-Mageed AB, Adelson PD, et al. Meeting report: discussions and preliminary findings on extracellular RNA measurement methods from laboratories in the NIH extracellular RNA communication consortium. J Extracell Vesicles. 2015;4:26533.

37. Yates AG, Pink RC, Erdbrügger U, et al. In sickness and in health: the functional role of extracellular vesicles in physiology and pathology in vivo: Part I: health and normal physiology. J Extracell Vesicles. 2022;11:e12151.

38. Yates AG, Pink RC, Erdbrügger U, et al. In sickness and in health: The functional role of extracellular vesicles in physiology and pathology in vivo: Part II: Pathology. J Extracell Vesicles. 2022;11:e12190.

39. Andreu Z, Yáñez-Mó M. Tetraspanins in extracellular vesicle formation and function. Front Immunol. 2014;5:442.

40. Teng F, Fussenegger M. Shedding light on extracellular vesicle biogenesis and bioengineering. Adv Sci. 2020;8:2003505.

41. Gurung S, Perocheau D, Touramanidou L, Baruteau J. The exosome journey: from biogenesis to uptake and intracellular signalling. Cell Commun Signal. 2021;19:47.

42. Shimaoka M, Kawamoto E, Gaowa A, Okamoto T, Park EJ. Connexins and integrins in exosomes. Cancers. 2019;11:106.

43. Brosseau C, Colas L, Magnan A, Brouard S. CD9 tetraspanin: a new pathway for the regulation of inflammation? Front Immunol. 2018;9:2316.

44. Cho JH, Dimri M, Dimri GP. MicroRNA-31 is a transcriptional target of histone deacetylase inhibitors and a regulator of cellular senescence. J Biol Chem. 2015;290:10555-67.

45. Ross R. Atherosclerosis--an inflammatory disease. N Engl J Med. 1999;340:115-26.

46. Barger AC, Beeuwkes R 3rd, Lainey LL, Silverman KJ. Hypothesis: vasa vasorum and neovascularization of human coronary arteries. A possible role in the pathophysiology of atherosclerosis. N Engl J Med. 1984;310:175-7.

47. Chen D, Zhao Z, Liu P, et al. Adventitial vasa vasorum neovascularization in femoral artery of type 2 diabetic patients with macroangiopathy is associated with macrophages and lymphocytes as well as the occurrence of cardiovascular events. Thromb Haemost. 2023;123:989-98.

48. Smith MJ, Simmons KM, Cambier JC. B cells in type 1 diabetes mellitus and diabetic kidney disease. Nat Rev Nephrol. 2017;13:712-20.

49. Choudhary N, Ahlawat RS. Interleukin-6 and C-reactive protein in pathogenesis of diabetic nephropathy: new evidence linking inflammation, glycemic control, and microalbuminuria. Iran J Kidney Dis. 2008;2:72-9.

50. Kuo CS, Lu YW, Hsu CY, et al. Increased activin A levels in prediabetes and association with carotid intima-media thickness: a cross-sectional analysis from I-Lan Longitudinal Aging Study. Sci Rep. 2018;8:9957.

51. Ueland T, Aukrust P, Aakhus S, et al. Activin A and cardiovascular disease in type 2 diabetes mellitus. Diab Vasc Dis Res. 2012;9:234-7.

52. Peng LN, Chou MY, Liang CK, et al. Association between serum activin A and metabolic syndrome in older adults: potential of activin A as a biomarker of cardiometabolic disease. Exp Gerontol. 2018;111:197-202.

53. Yndestad A, Ueland T, Øie E, et al. Elevated levels of activin A in heart failure: potential role in myocardial remodeling. Circulation. 2004;109:1379-85.

54. Robson NC, Wei H, McAlpine T, Kirkpatrick N, Cebon J, Maraskovsky E. Activin-A attenuates several human natural killer cell functions. Blood. 2009;113:3218-25.

55. Shiozaki M, Kosaka M, Eto Y. Activin A: a commitment factor in erythroid differentiation. Biochem Biophys Res Commun. 1998;242:631-5.

56. Kaushansky K. Thrombopoietin and its receptor in normal and neoplastic hematopoiesis. Thromb J. 2016;14:40.

57. Bosco O, Vizio B, Gruden G, et al. Thrombopoietin contributes to enhanced platelet activation in patients with type 1 diabetes mellitus. Int J Mol Sci. 2021;22:7032.

58. Pretorius L, Thomson GJA, Adams RCM, Nell TA, Laubscher WA, Pretorius E. Platelet activity and hypercoagulation in type 2 diabetes. Cardiovasc Diabetol. 2018;17:141.

59. Rossi F, Rossi E, Pareti FI, Colli S, Tremoli E, et al. In vitro measurement of platelet glycoprotein IIb/IIIa receptor blockade by abciximab: interindividual variation and increased platelet secretion. Haematologica. 2001;86:192-8.

60. Kawabata H. Transferrin and transferrin receptors update. Free Radic Biol Med. 2019;133:46-54.

61. Larsen SB, Grove EL, Hvas AM, Kristensen SD. Platelet turnover in stable coronary artery disease - influence of thrombopoietin and low-grade inflammation. PLoS One. 2014;9:e85566.

62. Prattichizzo F, De Nigris V, Sabbatinelli J, et al. CD31+ extracellular vesicles from patients with type 2 diabetes shuttle a miRNA signature associated with cardiovascular complications. Diabetes. 2021;70:240-54.

63. Jaskuła K, Sacharczuk M, Gaciong Z, Skiba DS. Cardiovascular effects mediated by HMMR and CD44. Mediators Inflamm. 2021;2021:4977209.

64. Kodama K, Horikoshi M, Toda K, et al. Expression-based genome-wide association study links the receptor CD44 in adipose tissue with type 2 diabetes. Proc Natl Acad Sci U S A. 2012;109:7049-54.

65. Khan AI, Kerfoot SM, Heit B, et al. Role of CD44 and hyaluronan in neutrophil recruitment. J Immunol. 2004;173:7594-601.

66. McKee CM, Penno MB, Cowman M, et al. Hyaluronan (HA) fragments induce chemokine gene expression in alveolar macrophages. The role of HA size and CD44. J Clin Invest. 1996;98:2403-13.

67. Collura S, Ciavarella C, Morsiani C, et al. MicroRNA profiles of human peripheral arteries and abdominal aorta in normal conditions: microRNAs-27a-5p, -139-5p and -155-5p emerge and in atheroma too. Mech Ageing Dev. 2021;198:111547.

68. Lu Y, Liu D, Feng Q, Liu Z. Diabetic nephropathy: perspective on extracellular vesicles. Front Immunol. 2020;11:943.

69. Howes RE, Patil AP, Piel FB, et al. The global distribution of the Duffy blood group. Nat Commun. 2011;2:266.

70. Gencer S, van der Vorst EPC, Aslani M, Weber C, Döring Y, Duchene J. Atypical chemokine receptors in cardiovascular disease. Thromb Haemost. 2019;119:534-41.

71. Betterman KL, Harvey NL. Decoys and cardiovascular development: CXCR7 and regulation of adrenomedullin signaling. Dev Cell. 2014;30:490-1.

72. Torphy RJ, Yee EJ, Schulick RD, Zhu Y. Atypical chemokine receptors: emerging therapeutic targets in cancer. Trends Pharmacol Sci. 2022;43:1085-97.

73. Forejtnikovà H, Vieillevoye M, Zermati Y, et al. Transferrin receptor 2 is a component of the erythropoietin receptor complex and is required for efficient erythropoiesis. Blood. 2010;116:5357-67.

74. Vance S, Zeidan E, Henrich VC, Sandros MG. Comparative analysis of human growth hormone in serum using SPRi, nano-SPRi and ELISA assays. J Vis Exp. 2016;107:53508.

75. Hauss WH, Bauch HJ, Schulte H. Adrenaline and noradrenaline as possible chemical mediators in the pathogenesis of arteriosclerosis. Ann N Y Acad Sci. 1990;598:91-101.

76. Reznikova MB, Adler AM, Postnov YuV. Erythrocyte membrane sialic acids in primary and secondary hypertension in man and rat. Eur J Clin Invest. 1984;14:87-9.

77. Hisamatsu T, Segawa H, Kadota A, Ohkubo T, Arima H, Miura K. Epidemiology of hypertension in Japan: beyond the new 2019 Japanese guidelines. Hypertens Res. 2020;43:1344-51.

78. Hosseinkhani B, van den Akker N, D'Haen J, et al. Direct detection of nano-scale extracellular vesicles derived from inflammation-triggered endothelial cells using surface plasmon resonance. Nanomedicine. 2017;13:1663-71.

79. Hirschberg Y, Boonen K, Schildermans K, et al. Characterising extracellular vesicles from individual low volume cerebrospinal fluid samples, isolated by SmartSEC. J Extracell Biol. 2022;1:e55.

80. Welsh JA, Goberdhan DCI, O'Driscoll L, et al; MISEV Consortium. Minimal information for studies of extracellular vesicles (MISEV2023): from basic to advanced approaches. J Extracell Vesicles. 2024;13:e12404.

81. Cvjetkovic A, Lötvall J, Lässer C. The influence of rotor type and centrifugation time on the yield and purity of extracellular vesicles. J Extracell Vesicles. 2014;3:23111.

82. Xie J, Li Q, Haesebrouck F, Van Hoecke L, Vandenbroucke RE. The tremendous biomedical potential of bacterial extracellular vesicles. Trends Biotechnol. 2022;40:1173-94.

83. Sun G, Gu Q, Zheng J, Cheng H, Cheng T. Emerging roles of extracellular vesicles in normal and malignant hematopoiesis. J Clin Invest. 2022;132:e160840.

84. Buzas EI. The roles of extracellular vesicles in the immune system. Nat Rev Immunol. 2023;23:236-50.

Extracellular Vesicles and Circulating Nucleic Acids
ISSN 2767-6641 (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/