REFERENCES

1. Kuhn TS, Hawkins D. The structure of scientific revolutions. Am J Phys. 1963;31:554-5.

2. Yin J, Ngiam KY, Teo HH. Role of artificial intelligence applications in real-life clinical practice: systematic review. J Med Internet Res. 2021;23:e25759.

3. Bhattamisra SK, Banerjee P, Gupta P, Mayuren J, Patra S, Candasamy M. Artificial intelligence in pharmaceutical and healthcare research. BDCC. 2023;7:10.

4. Nagendran M, Chen Y, Lovejoy CA, et al. Artificial intelligence versus clinicians: systematic review of design, reporting standards, and claims of deep learning studies. BMJ. 2020;368:m689.

5. Mueller ST, Hoffman RR, Clancey W, Emrey A, Klein G. Explanation in human-AI systems: a literature meta-review, synopsis of key ideas and publications, and bibliography for explainable AI. arXiv 2019;arXiv:1902.01876. Available from https://arxiv.org/abs/1902.01876 [accessed 11 February 2025].

6. Greener JG, Kandathil SM, Moffat L, Jones DT. A guide to machine learning for biologists. Nat Rev Mol Cell Biol. 2022;23:40-55.

7. Choi RY, Coyner AS, Kalpathy-Cramer J, Chiang MF, Campbell JP. Introduction to machine learning, neural networks, and deep learning. Transl Vis Sci Technol. 2020;9:14.

8. Nayarisseri A, Khandelwal R, Tanwar P, et al. Artificial intelligence, big data and machine learning approaches in precision medicine & drug discovery. Curr Drug Targets. 2021;22:631-55.

9. Haug CJ, Drazen JM. Artificial intelligence and machine learning in clinical medicine, 2023. N Engl J Med. 2023;388:1201-8.

10. Tropsha A, Golbraikh A. Predictive QSAR modeling workflow, model applicability domains, and virtual screening. Curr Pharm Des. 2007;13:3494-504.

11. Reker D, Rybakova Y, Kirtane AR, et al. Computationally guided high-throughput design of self-assembling drug nanoparticles. Nat Nanotechnol. 2021;16:725-33.

12. Tunyasuvunakool K, Adler J, Wu Z, et al. Highly accurate protein structure prediction for the human proteome. Nature. 2021;596:590-6.

13. Cheng J, Novati G, Pan J, et al. Accurate proteome-wide missense variant effect prediction with AlphaMissense. Science. 2023;381:eadg7492.

14. LeCun Y, Bengio Y, Hinton G. Deep learning. Nature. 2015;521:436-44.

15. Min S, Lee B, Yoon S. Deep learning in bioinformatics. Brief Bioinform. 2017;18:851-69.

16. Derry A, Krzywinski M, Altman N. Convolutional neural networks. Nat Methods. 2023;20:1269-70.

17. Das S, Tariq A, Santos T, Kantareddy SS, Banerjee I. Recurrent neural networks (RNNs): architectures, training tricks, and introduction to influential research. In: Colliot O, Editor. Machine learning for brain disorders. New York: Springer US; 2023. pp. 117-38.

18. Sahiner B, Chan HP, Petrick N, et al. Classification of mass and normal breast tissue: a convolution neural network classifier with spatial domain and texture images. IEEE Trans Med Imaging. 1996;15:598-610.

19. Dou B, Zhu Z, Merkurjev E, et al. Machine learning methods for small data challenges in molecular science. Chem Rev. 2023;123:8736-80.

20. Alowais SA, Alghamdi SS, Alsuhebany N, et al. Revolutionizing healthcare: the role of artificial intelligence in clinical practice. BMC Med Educ. 2023;23:689.

21. Li X, Jia M, Islam MT, Yu L, Xing L. Self-supervised feature learning via exploiting multi-modal data for retinal disease diagnosis. IEEE Trans Med Imaging. 2020;39:4023-33.

22. Shorfuzzaman M, Hossain MS. MetaCOVID: a Siamese neural network framework with contrastive loss for n-shot diagnosis of COVID-19 patients. Pattern Recognit. 2021;113:107700.

23. Fan DP, Zhou T, Ji GP, et al. Inf-Net: automatic COVID-19 lung infection segmentation from CT images. IEEE Trans Med Imaging. 2020;39:2626-37.

24. Swiderska-Chadaj Z, Pinckaers H, van Rijthoven M, et al. Learning to detect lymphocytes in immunohistochemistry with deep learning. Med Image Anal. 2019;58:101547.

25. Mei J, Cheng MM, Xu G, Wan LR, Zhang H. SANet: a slice-aware network for pulmonary nodule detection. IEEE Trans Pattern Anal Mach Intell. 2022;44:4374-87.

26. Esteva A, Kuprel B, Novoa RA, et al. Dermatologist-level classification of skin cancer with deep neural networks. Nature. 2017;542:115-8.

27. McKinney SM, Sieniek M, Godbole V, et al. International evaluation of an AI system for breast cancer screening. Nature. 2020;577:89-94.

28. Chan RC, To CKC, Cheng KCT, Yoshikazu T, Yan LLA, Tse GM. Artificial intelligence in breast cancer histopathology. Histopathology. 2023;82:198-210.

29. Nomani A, Ansari Y, Nasirpour MH, Masoumian A, Pour ES, Valizadeh A. PSOWNNs-CNN: a computational radiology for breast cancer diagnosis improvement based on image processing using machine learning methods. Comput Intell Neurosci. 2022;2022:5667264.

30. Zheng J, Lin D, Gao Z, Wang S, He M, Fan J. Deep learning assisted efficient AdaBoost algorithm for breast cancer detection and early diagnosis. IEEE Access. 2020;8:96946-54.

31. Loh PR, Tucker G, Bulik-Sullivan BK, et al. Efficient Bayesian mixed-model analysis increases association power in large cohorts. Nat Genet. 2015;47:284-90.

32. Lee SI, Dudley AM, Drubin D, et al. Learning a prior on regulatory potential from eQTL data. PLoS Genet. 2009;5:e1000358.

33. Kircher M, Witten DM, Jain P, O’Roak BJ, Cooper GM, Shendure J. A general framework for estimating the relative pathogenicity of human genetic variants. Nat Genet. 2014;46:310-5.

34. Kanehisa M, Goto S. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000;28:27-30.

35. Ashburner M, Ball CA, Blake JA, et al. Gene ontology: tool for the unification of biology. The gene ontology consortium. Nat Genet. 2000;25:25-9.

36. Litjens G, Kooi T, Bejnordi BE, et al. A survey on deep learning in medical image analysis. Med Image Anal. 2017;42:60-88.

37. Breiman L. Random forests. Machine Learning. 2001;45:5-32.

38. Camacho DM, Collins KM, Powers RK, Costello JC, Collins JJ. Next-generation machine learning for biological networks. Cell. 2018;173:1581-92.

39. Li Y, Huang C, Ding L, Li Z, Pan Y, Gao X. Deep learning in bioinformatics: introduction, application, and perspective in the big data era. Methods. 2019;166:4-21.

40. Kavakiotis I, Tsave O, Salifoglou A, Maglaveras N, Vlahavas I, Chouvarda I. Machine learning and data mining methods in diabetes research. Comput Struct Biotechnol J. 2017;15:104-16.

41. Ribeiro AH, Ribeiro MH, Paixão GMM, et al. Automatic diagnosis of the 12-lead ECG using a deep neural network. Nat Commun. 2020;11:1760.

42. Hoshino A, Kim HS, Bojmar L, et al. Extracellular vesicle and particle biomarkers define multiple human cancers. Cell. 2020;182:1044-61.e18.

43. World Health Organization. Obesity and overweight. Available from https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight [accessed 11 February 2025].

44. Garcia-Closas M, Gunsoy NB, Chatterjee N. Combined associations of genetic and environmental risk factors: implications for prevention of breast cancer. J Natl Cancer Inst. 2014;106:dju305.

45. Dorling L, Carvalho S, Allen J, et al; Breast Cancer Association Consortium. Breast cancer risk genes - association analysis in more than 113,000 women. N Engl J Med. 2021;384:428-39.

46. Dai X, Li T, Bai Z, Yang Y, Liu X, Zhan J, et al. Breast cancer intrinsic subtype classification, clinical use and future trends. Am J Cancer Res. 2015;5:2929-43.

47. Korde LA, Somerfield MR, Carey LA, et al. Neoadjuvant chemotherapy, endocrine therapy, and targeted therapy for breast cancer: ASCO guideline. J Clin Oncol. 2021;39:1485-505.

48. Keup C, Kimmig R, Kasimir-Bauer S. The diversity of liquid biopsies and their potential in breast cancer management. Cancers. 2023;15:5463.

49. Munkácsy G, Santarpia L, Győrffy B. Gene expression profiling in early breast cancer-patient stratification based on molecular and tumor microenvironment features. Biomedicines. 2022;10:248.

50. Kalinsky K, Barlow WE, Gralow JR, et al. 21-gene assay to inform chemotherapy benefit in node-positive breast cancer. N Engl J Med. 2021;385:2336-47.

51. Yee D, DeMichele AM, Yau C, et al; I-SPY2 Trial Consortium. Association of event-free and distant recurrence-free survival with individual-level pathologic complete response in neoadjuvant treatment of stages 2 and 3 breast cancer: three-year follow-up analysis for the I-SPY2 adaptively randomized clinical trial. JAMA Oncol. 2020;6:1355-62.

52. Arneth B. Update on the types and usage of liquid biopsies in the clinical setting: a systematic review. BMC Cancer. 2018;18:527.

53. Li J, Jiang W, Wei J, et al. Patient specific circulating tumor DNA fingerprints to monitor treatment response across multiple tumors. J Transl Med. 2020;18:293.

54. Cescon DW, Kalinsky K, Parsons HA, et al. Therapeutic targeting of minimal residual disease to prevent late recurrence in hormone-receptor positive breast cancer: challenges and new approaches. Front Oncol. 2021;11:667397.

55. Parsons HA, Rhoades J, Reed SC, et al. Sensitive detection of minimal residual disease in patients treated for early-stage breast cancer. Clin Cancer Res. 2020;26:2556-64.

56. Butler TM, Boniface CT, Johnson-Camacho K, et al. Circulating tumor DNA dynamics using patient-customized assays are associated with outcome in neoadjuvantly treated breast cancer. Cold Spring Harb Mol Case Stud. 2019;5:a003772.

57. McDonald BR, Contente-Cuomo T, Sammut SJ, et al. Personalized circulating tumor DNA analysis to detect residual disease after neoadjuvant therapy in breast cancer. Sci Transl Med. 2019;11:eaax7392.

58. Li S, Lai H, Liu J, et al. Circulating tumor DNA predicts the response and prognosis in patients with early breast cancer receiving neoadjuvant chemotherapy. JCO Precis Oncol. 2020;4:PO.19.00292.

59. Magbanua MJM, Swigart LB, Wu HT, et al. Circulating tumor DNA in neoadjuvant-treated breast cancer reflects response and survival. Ann Oncol. 2021;32:229-39.

60. Hua H, Deng Y, Zhang J, Zhou X, Zhang T, Khoo BL. AIEgen-deep: deep learning of single AIEgen-imaging pattern for cancer cell discrimination and preclinical diagnosis. Biosens Bioelectron. 2024;253:116086.

61. Rashid MM, Selvarajoo K. Advancing drug-response prediction using multi-modal and -omics machine learning integration (MOMLIN): a case study on breast cancer clinical data. Brief Bioinform. 2024;25:bbae300.

62. Chen Q, Zhang J, Meng R, et al. Modality-specific information disentanglement from multi-parametric MRI for breast tumor segmentation and computer-aided diagnosis. IEEE Trans Med Imaging. 2024;43:1958-71.

63. Li J, Cheng J, Meng L, et al. DeepTree: pathological image classification through imitating tree-like strategies of pathologists. IEEE Trans Med Imaging. 2024;43:1501-12.

64. Liu Y, Sorkhei M, Dembrower K, Azizpour H, Strand F, Smith K. Use of an AI score combining cancer signs, masking, and risk to select patients for supplemental breast cancer screening. Radiology. 2024;311:e232535.

65. Donnelly J, Moffett L, Barnett AJ, et al. AsymMirai: interpretable mammography-based deep learning model for 1-5-year breast cancer risk prediction. Radiology. 2024;310:e232780.

66. Hossain I, Fanfani V, Fischer J, Quackenbush J, Burkholz R. Biologically informed NeuralODEs for genome-wide regulatory dynamics. Genome Biol. 2024;25:127.

67. Xi Y, Zheng K, Deng F, et al. Themis: advancing precision oncology through comprehensive molecular subtyping and optimization. Brief Bioinform. 2024;25:bbae261.

68. Yao X, Ouyang S, Lian Y, et al. PheSeq, a Bayesian deep learning model to enhance and interpret the gene-disease association studies. Genome Med. 2024;16:56.

69. Huang K, Zhang J, Yu Y, Lin Y, Song C. The impact of chemotherapy and survival prediction by machine learning in early Elderly Triple Negative Breast Cancer (eTNBC): a population based study from the SEER database. BMC Geriatr. 2022;22:268.

70. Couch Y, Buzàs EI, Di Vizio D, et al. A brief history of nearly EV-erything - the rise and rise of extracellular vesicles. J Extracell Vesicles. 2021;10:e12144.

71. Wortzel I, Dror S, Kenific CM, Lyden D. Exosome-mediated metastasis: communication from a distance. Dev Cell. 2019;49:347-60.

72. Kahlert C, Melo SA, Protopopov A, et al. Identification of double-stranded genomic DNA spanning all chromosomes with mutated KRAS and p53 DNA in the serum exosomes of patients with pancreatic cancer. J Biol Chem. 2014;289:3869-75.

73. Vagner T, Spinelli C, Minciacchi VR, et al. Large extracellular vesicles carry most of the tumour DNA circulating in prostate cancer patient plasma. J Extracell Vesicles. 2018;7:1505403.

74. García-Romero N, Madurga R, Rackov G, et al. Polyethylene glycol improves current methods for circulating extracellular vesicle-derived DNA isolation. J Transl Med. 2019;17:75.

75. Che H, Stanley K, Jatsenko T, Thienpont B, Vermeesch JR. Expanded knowledge of cell-free DNA biology: potential to broaden the clinical utility. Extracell Vesicles Circ Nucl Acids. 2022;3:216-34.

76. Fais S, O’Driscoll L, Borras FE, et al. Evidence-based clinical use of nanoscale extracellular vesicles in nanomedicine. ACS Nano. 2016;10:3886-99.

77. Hou C, Wu Q, Xu L, et al. Exploiting the potential of extracellular vesicles as delivery vehicles for the treatment of melanoma. Front Bioeng Biotechnol. 2022;10:1054324.

78. Tamura T, Yoshioka Y, Sakamoto S, Ichikawa T, Ochiya T. Extracellular vesicles as a promising biomarker resource in liquid biopsy for cancer. Extracell Vesicles Circ Nucl Acids. 2021;2:148-74.

79. González E, Falcón-Pérez JM. Cell-derived extracellular vesicles as a platform to identify low-invasive disease biomarkers. Expert Rev Mol Diagn. 2015;15:907-23.

80. García-Romero N, Carrión-Navarro J, Areal-Hidalgo P, et al. BRAF V600E detection in liquid biopsies from pediatric central nervous system tumors. Cancers. 2019;12:66.

81. García-Silva S, Benito-Martín A, Sánchez-Redondo S, et al. Use of extracellular vesicles from lymphatic drainage as surrogate markers of melanoma progression and BRAFV600E mutation. J Exp Med. 2019;216:1061-70.

82. Greenberg ZF, Graim KS, He M. Towards artificial intelligence-enabled extracellular vesicle precision drug delivery. Adv Drug Deliv Rev. 2023;199:114974.

83. Welsh JA, Goberdhan DCI, O’Driscoll L, et al; MISEV Consortium. Minimal information for studies of extracellular vesicles (MISEV2023): from basic to advanced approaches. J Extracell Vesicles. 2024;13:e12404.

84. Li B, Kugeratski FG, Kalluri R. A novel machine learning algorithm selects proteome signature to specifically identify cancer exosomes. Elife. 2024;12:RP90390.

85. Wu KL, Martinez-Paniagua M, Reichel K, et al. Automated detection of apoptotic bodies and cells in label-free time-lapse high-throughput video microscopy using deep convolutional neural networks. Bioinformatics. 2023;39:btad584.

86. Luo HT, Zheng YY, Tang J, et al. Dissecting the multi-omics atlas of the exosomes released by human lung adenocarcinoma stem-like cells. NPJ Genom Med. 2021;6:48.

87. Li X, Liu Y, Fan Y, et al. Advanced nanoencapsulation-enabled ultrasensitive analysis: unraveling tumor extracellular vesicle subpopulations for differential diagnosis of hepatocellular carcinoma via DNA cascade reactions. ACS Nano. 2024;18:11389-403.

88. Sheth D, Giger ML. Artificial intelligence in the interpretation of breast cancer on MRI. J Magn Reson Imaging. 2020;51:1310-24.

89. Nicolis O, De Los Angeles D, Taramasco C. A contemporary review of breast cancer risk factors and the role of artificial intelligence. Front Oncol. 2024;14:1356014.

90. Le EPV, Wang Y, Huang Y, Hickman S, Gilbert FJ. Artificial intelligence in breast imaging. Clin Radiol. 2019;74:357-66.

91. Balkenende L, Teuwen J, Mann RM. Application of deep learning in breast cancer imaging. Semin Nucl Med. 2022;52:584-96.

92. Mahichi H, Ghods V, Sohrabi MK, Sabbaghi A. BreastCDNet: breast cancer detection neural network, classification and localization.

93. Ahn JS, Shin S, Yang SA, et al. Artificial intelligence in breast cancer diagnosis and personalized medicine. J Breast Cancer. 2023;26:405-35.

94. Zhang XW, Qi GX, Liu MX, et al. Deep learning promotes profiling of multiple miRNAs in single extracellular vesicles for cancer diagnosis. ACS Sens. 2024;9:1555-64.

95. Zhang Y, Chang K, Ogunlade B, et al. From genotype to phenotype: raman spectroscopy and machine learning for label-free single-cell analysis. ACS Nano. 2024;18:18101-17.

96. Kim J, Son HY, Lee S, et al. Deep learning-assisted monitoring of trastuzumab efficacy in HER2-overexpressing breast cancer via SERS immunoassays of tumor-derived urinary exosomal biomarkers. Biosens Bioelectron. 2024;258:116347.

97. Zhuang Y, Ouyang Y, Ding L, et al. Source tracing of kidney injury via the multispectral fingerprint identified by machine learning-driven surface-enhanced raman spectroscopic analysis. ACS Sens. 2024;9:2622-33.

98. Xie Y, Su X, Wen Y, Zheng C, Li M. Artificial Intelligent label-free SERS profiling of serum exosomes for breast cancer diagnosis and postoperative assessment. Nano Lett. 2022;22:7910-8.

99. Elendu C, Amaechi DC, Elendu TC, et al. Ethical implications of AI and robotics in healthcare: a review. Medicine. 2023;102:e36671.

100. Carter SM, Rogers W, Win KT, Frazer H, Richards B, Houssami N. The ethical, legal and social implications of using artificial intelligence systems in breast cancer care. Breast. 2020;49:25-32.

Extracellular Vesicles and Circulating Nucleic Acids
ISSN 2767-6641 (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/