REFERENCES

1. Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P. General principles of cell communication. In: Molecular Biology of the Cell. New York: Garland Science; 2002. Available from: https://www.ncbi.nlm.nih.gov/books/NBK26813/. [Last accessed on 8 Aug 2024].

2. Pitt JM, Kroemer G, Zitvogel L. Extracellular vesicles: masters of intercellular communication and potential clinical interventions. J Clin Invest. 2016;126:1139-43.

3. Ståhl AL, Johansson K, Mossberg M, Kahn R, Karpman D. Exosomes and microvesicles in normal physiology, pathophysiology, and renal diseases. Pediatr Nephrol. 2019;34:11-30.

4. György B, Szabó TG, Pásztói M, et al. Membrane vesicles, current state-of-the-art: emerging role of extracellular vesicles. Cell Mol Life Sci. 2011;68:2667-88.

5. Welsh JA, Goberdhan DCI, O’Driscoll L, et al; MISEV Consortium. Minimal information for studies of extracellular vesicles (MISEV2023): from basic to advanced approaches. J Extracell Vesicles 2024;13:e12404.

6. Tkach M, Kowal J, Théry C. Why the need and how to approach the functional diversity of extracellular vesicles. Philos Trans R Soc Lond B Biol Sci. 2018;373:20160479.

7. Maisano D, Mimmi S, Russo R, et al. Uncovering the exosomes diversity: a window of opportunity for tumor progression monitoring. Pharmaceuticals. 2020;13:180.

8. Yáñez-Mó M, Siljander PRM, Andreu Z, et al. Biological properties of extracellular vesicles and their physiological functions. J Extracell Vesicles. 2015;4:27066.

9. Kowal J, Tkach M, Théry C. Biogenesis and secretion of exosomes. Curr Opin Cell Biol. 2014;29:116-25.

10. Yokoi A, Ochiya T. Exosomes and extracellular vesicles: rethinking the essential values in cancer biology. Semin Cancer Biol. 2021;74:79-91.

11. Doyle LM, Wang MZ. Overview of extracellular vesicles, their origin, composition, purpose, and methods for exosome isolation and analysis. Cells. 2019;8:727.

12. Skotland T, Hessvik NP, Sandvig K, Llorente A. Exosomal lipid composition and the role of ether lipids and phosphoinositides in exosome biology. J Lipid Res. 2019;60:9-18.

13. van Niel G, Carter DRF, Clayton A, Lambert DW, Raposo G, Vader P. Challenges and directions in studying cell-cell communication by extracellular vesicles. Nat Rev Mol Cell Biol. 2022;23:369-82.

14. Negahdaripour M, Vakili B, Nezafat N. Exosome-based vaccines and their position in next generation vaccines. Int Immunopharmacol. 2022;113:109265.

15. Murillo OD, Thistlethwaite W, Rozowsky J, et al. exRNA Atlas analysis reveals distinct extracellular RNA cargo types and their carriers present across human biofluids. Cell. 2019;177:463-77.e15.

16. Adams K, Weber KS, Johnson SM. Exposome and immunity training: how pathogen exposure order influences innate immune cell lineage commitment and function. Int J Mol Sci. 2020;21:8462.

17. Bril M, Fredrich S, Kurniawan NA. Stimuli-responsive materials: a smart way to study dynamic cell responses. Smart Mater Med. 2022;3:257-73.

18. Fleenor CJ, Higa K, Weil MM, DeGregori J. Evolved cellular mechanisms to respond to genotoxic insults: implications for radiation-induced hematologic malignancies. Radiat Res. 2015;184:341-51.

19. Nagpal S, Mande SS. Environmental insults and compensative responses: when microbiome meets cancer. Discov Oncol. 2023;14:130.

20. Leroy H, Han M, Woottum M, et al. Virus-mediated cell-cell fusion. Int J Mol Sci. 2020;21:9644.

21. Thaker SK, Ch’ng J, Christofk HR. Viral hijacking of cellular metabolism. BMC Biol. 2019;17:59.

22. Albrecht T, Fons M, Boldogh I, Rabson AS. Effects on cells. In: Baron S, editor. Medical microbiology. Galveston (TX): University of Texas Medical Branch at Galveston; 1996. Chapter 44.

23. Fanelli M, Petrone V, Buonifacio M, et al. Multidistrict host-pathogen interaction during COVID-19 and the development post-infection chronic inflammation. Pathogens. 2022;11:1198.

24. Delorey TM, Ziegler CGK, Heimberg G, et al. COVID-19 tissue atlases reveal SARS-CoV-2 pathology and cellular targets. Nature. 2021;595:107-13.

25. Ashraf UM, Abokor AA, Edwards JM, et al. SARS-CoV-2, ACE2 expression, and systemic organ invasion. Physiol Genomics. 2021;53:51-60.

26. Mollica V, Rizzo A, Massari F. The pivotal role of TMPRSS2 in coronavirus disease 2019 and prostate cancer. Future Oncol. 2020;16:2029-33.

27. Shapira T, Monreal IA, Dion SP, et al. A TMPRSS2 inhibitor acts as a pan-SARS-CoV-2 prophylactic and therapeutic. Nature. 2022;605:340-8.

28. Akiyama H, Ramirez NG, Gudheti MV, Gummuluru S. CD169-mediated trafficking of HIV to plasma membrane invaginations in dendritic cells attenuates efficacy of anti-gp120 broadly neutralizing antibodies. PLoS Pathog. 2015;11:e1004751.

29. Gutiérrez-Martínez E, Benet Garrabé S, Mateos N, et al. Actin-regulated Siglec-1 nanoclustering influences HIV-1 capture and virus-containing compartment formation in dendritic cells. Elife. 2023;12:e78836.

30. Perez-Zsolt D, Muñoz-Basagoiti J, Rodon J, et al. SARS-CoV-2 interaction with Siglec-1 mediates trans-infection by dendritic cells. Cell Mol Immunol. 2021;18:2676-8.

31. Pizzato M, Baraldi C, Boscato Sopetto G, et al. SARS-CoV-2 and the host cell: a tale of interactions. Front Virol. 2022;1:815388.

32. Pellet-Many C, Frankel P, Jia H, Zachary I. Neuropilins: structure, function and role in disease. Biochem J. 2008;411:211-26.

33. Cantuti-Castelvetri L, Ojha R, Pedro LD, et al. Neuropilin-1 facilitates SARS-CoV-2 cell entry and infectivity. Science. 2020;370:856-60.

34. Li ZL, Buck M. Neuropilin-1 assists SARS-CoV-2 infection by stimulating the separation of spike protein S1 and S2. Biophys J. 2021;120:2828-37.

35. Wayhelova M, Vallova V, Broz P, et al. A unique case of Bloom syndrome with a combination of genetic hits: a lesson from trio‑based exome sequencing: a case report. Mol Med Rep. 2023;27:110.

36. Gonzalez-Garcia P, Fiorillo Moreno O, Zarate Peñata E, et al. From cell to symptoms: the role of SARS-CoV-2 cytopathic effects in the pathogenesis of COVID-19 and Long COVID. Int J Mol Sci. 2023;24:8290.

37. Shang C, Liu Z, Zhu Y, et al. SARS-CoV-2 causes mitochondrial dysfunction and mitophagy impairment. Front Microbiol. 2021;12:780768.

38. Upadhyay M, Gupta S. Endoplasmic reticulum secretory pathway: potential target against SARS-CoV-2. Virus Res. 2022;320:198897.

39. Sicari D, Chatziioannou A, Koutsandreas T, Sitia R, Chevet E. Role of the early secretory pathway in SARS-CoV-2 infection. J Cell Biol. 2020;219:e202006005.

40. Kloc M, Uosef A, Wosik J, Kubiak JZ, Ghobrial RM. Virus interactions with the actin cytoskeleton - what we know and do not know about SARS-CoV-2. Arch Virol. 2022;167:737-49.

41. Cooper GM. The mechanism of vesicular transport. In: The cell: a molecular approach. Sunderland (MA): Sinauer Associates; 2000. Available from: https://www.ncbi.nlm.nih.gov/books/NBK9886//. [Last accessed on 8 Aug 2024].

42. Bonifacino JS, Glick BS. The mechanisms of vesicle budding and fusion. Cell. 2004;116:153-66.

43. Sbarigia C, Vardanyan D, Buccini L, Tacconi S, Dini L. SARS-CoV-2 and extracellular vesicles: an intricate interplay in pathogenesis, diagnosis and treatment. Front Nanotechnol. 2022;4:987034.

44. Kumar A, Kodidela S, Tadrous E, et al. Extracellular vesicles in viral replication and pathogenesis and their potential role in therapeutic intervention. Viruses. 2020;12:887.

45. Fujita M, Ureshino H, Sugihara A, Nishioka A, Kimura S. Immune thrombocytopenia exacerbation after COVID-19 vaccination in a young woman. Cureus. 2021;13:e17942.

46. van Eijk LE, Binkhorst M, Bourgonje AR, et al. COVID-19: immunopathology, pathophysiological mechanisms, and treatment options. J Pathol. 2021;254:307-31.

47. Yang L, Liu S, Liu J, et al. COVID-19: immunopathogenesis and immunotherapeutics. Signal Transduct Target Ther. 2020;5:128.

48. Centers for Disease Control and Prevention (CDC). Long COVID basics. Available from: https://www.cdc.gov/coronavirus/2019-ncov/long-term-effects/. [Last accessed on 8 Aug 2024].

49. Chevinsky JR, Tao G, Lavery AM, et al. Late conditions diagnosed 1-4 months following an initial coronavirus disease 2019 (COVID-19) encounter: A matched-cohort study using inpatient and outpatient administrative data - United States, 1 March-30 June 2020. Clin Infect Dis. 2021;73:S5-16.

50. O’Laughlin KN, Thompson M, Hota B, et al; INSPIRE Investigators. Study protocol for the Innovative Support for Patients with SARS-COV-2 Infections Registry (INSPIRE): a longitudinal study of the medium and long-term sequelae of SARS-CoV-2 infection. PLoS One 2022;17:e0264260.

51. Soriano JB, Murthy S, Marshall JC, Relan P, Diaz JV; WHO Clinical Case Definition Working Group on Post-COVID-19 Condition. A clinical case definition of post-COVID-19 condition by a Delphi consensus. Lancet Infect Dis 2022;22:e102-7.

52. Carfì A, Bernabei R, Landi F; Gemelli Against COVID-19 Post-Acute Care Study Group. Persistent symptoms in patients after acute COVID-19. JAMA 2020;324:603-5.

53. Takao M, Ohira M. Neurological post-acute sequelae of SARS-CoV-2 infection. Psychiatry Clin Neurosci. 2023;77:72-83.

54. Shami-shah A, Travis BG, Walt DR. Advances in extracellular vesicle isolation methods: a path towards cell-type specific EV isolation. Extracell Vesicles Circ Nucleic Acids. 2023;4:447-60.

55. Malhotra S, Amin ZM, Dobhal G, Cottam S, Nann T, Goreham RV. Novel devices for isolation and detection of bacterial and mammalian extracellular vesicles. Mikrochim Acta. 2021;188:139.

56. Pesce E, Manfrini N, Cordiglieri C, et al. Exosomes recovered from the plasma of COVID-19 patients expose SARS-CoV-2 spike-derived fragments and contribute to the adaptive immune response. Front Immunol. 2021;12:785941.

57. Troyer Z, Alhusaini N, Tabler CO, et al. Extracellular vesicles carry SARS-CoV-2 spike protein and serve as decoys for neutralizing antibodies. J Extracell Vesicles. 2021;10:e12112.

58. Berry F, Morin-Dewaele M, Majidipur A, et al. Proviral role of human respiratory epithelial cell-derived small extracellular vesicles in SARS-CoV-2 infection. J Extracell Vesicles. 2022;11:e12269.

59. Xia B, Pan X, Luo RH, et al. Extracellular vesicles mediate antibody-resistant transmission of SARS-CoV-2. Cell Discov. 2023;9:2.

60. Serretiello E, Ballini A, Smimmo A, et al. Extracellular vesicles as a translational approach for the treatment of COVID-19 disease: an updated overview. Viruses. 2023;15:1976.

61. Choi D, Khan N, Montermini L, et al. Quantitative proteomics and biological activity of extracellular vesicles engineered to express SARS-CoV-2 spike protein. J Extracell Biol. 2022;1:e58.

62. McNamara RP, Dittmer DP. Modern techniques for the isolation of extracellular vesicles and viruses. J Neuroimmune Pharmacol. 2020;15:459-72.

63. Kongsomros S, Pongsakul N, Panachan J, et al. Comparison of viral inactivation methods on the characteristics of extracellular vesicles from SARS-CoV-2 infected human lung epithelial cells. J Extracell Vesicles. 2022;11:e12291.

64. Chutipongtanate S, Kongsomros S, Pongsakul N, et al. Anti-SARS-CoV-2 effect of extracellular vesicles released from mesenchymal stem cells. J Extracell Vesicles. 2022;11:e12201.

65. Park JH, Choi Y, Lim CW, et al. Antiviral effects of miRNAs in extracellular vesicles against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and mutations in SARS-CoV-2 RNA virus. bioRxiv. [Preprint] Jul 27, 2020 [accessed on 2024 Aug 8]. Available from: https://doi.org/10.1101/2020.07.27.190561.

66. Sengupta V, Sengupta S, Lazo A, Woods P, Nolan A, Bremer N. Exosomes derived from bone marrow mesenchymal stem cells as treatment for severe COVID-19. Stem Cells Dev. 2020;29:747-54.

67. El-Shennawy L, Hoffmann AD, Dashzeveg NK, et al. Circulating ACE2-expressing extracellular vesicles block broad strains of SARS-CoV-2. Nat Commun. 2022;13:405.

68. Barberis E, Vanella VV, Falasca M, et al. Circulating exosomes are strongly involved in SARS-CoV-2 infection. Front Mol Biosci. 2021;8:632290.

69. Bautista-Vargas M, Bonilla-Abadía F, Cañas CA. Potential role for tissue factor in the pathogenesis of hypercoagulability associated with in COVID-19. J Thromb Thrombolysis. 2020;50:479-83.

70. Rosell A, Havervall S, von Meijenfeldt F, et al. Patients with COVID-19 have elevated levels of circulating extracellular vesicle tissue factor activity that is associated with severity and mortality-brief report. Arterioscler Thromb Vasc Biol. 2021;41:878-82.

71. Craddock V, Mahajan A, Spikes L, et al. Persistent circulation of soluble and extracellular vesicle-linked Spike protein in individuals with postacute sequelae of COVID-19. J Med Virol. 2023;95:e28568.

72. Peluso MJ, Deeks SG, Mustapic M, et al. SARS-CoV-2 and mitochondrial proteins in neural-derived exosomes of COVID-19. Ann Neurol. 2022;91:772-81.

73. Sun B, Tang N, Peluso MJ, et al. Characterization and biomarker analyses of post-COVID-19 complications and neurological manifestations. Cells. 2021;10:386.

74. Pereira AC, Tenreiro A, Cunha MV. When FLOW-FISH met FACS: combining multiparametric, dynamic approaches for microbial single-cell research in the total environment. Sci Total Environ. 2022;806:150682.

75. Pang K, Dong S, Zhu Y, et al. Advanced flow cytometry for biomedical applications. J Biophotonics. 2023;16:e202300135.

76. Di Bella MA. Overview and update on extracellular vesicles: considerations on exosomes and their application in modern medicine. Biology. 2022;11:804.

77. Liu H, Tian Y, Xue C, Niu Q, Chen C, Yan X. Analysis of extracellular vesicle DNA at the single-vesicle level by nano-flow cytometry. J Extracell Vesicles. 2022;11:e12206.

78. Kwon Y, Park J. Methods to analyze extracellular vesicles at single particle level. Micro Nano Syst Lett. 2022;10:14.

79. Gul B, Syed F, Khan S, Iqbal A, Ahmad I. Characterization of extracellular vesicles by flow cytometry: challenges and promises. Micron. 2022;161:103341.

80. Notarbartolo S, Ranzani V, Bandera A, et al. Integrated longitudinal immunophenotypic, transcriptional and repertoire analyses delineate immune responses in COVID-19 patients. Sci Immunol. 2021;6:eabg5021.

81. Kiaee F, Jamaati H, Shahi H, et al. Immunophenotype and function of circulating myeloid derived suppressor cells in COVID-19 patients. Sci Rep. 2022;12:22570.

82. Gurshaney S, Morales-Alvarez A, Ezhakunnel K, et al. Metabolic dysregulation impairs lymphocyte function during severe SARS-CoV-2 infection. Commun Biol. 2023;6:374.

83. Laing AG, Lorenc A, Del Molino Del Barrio I, et al. A dynamic COVID-19 immune signature includes associations with poor prognosis. Nat Med. 2020;26:1623-35.

84. Kreutmair S, Unger S, Núñez NG, et al. Distinct immunological signatures discriminate severe COVID-19 from non-SARS-CoV-2-driven critical pneumonia. Immunity. 2021;54:1578-93.e5.

85. Yu S, Di C, Chen S, et al. Distinct immune signatures discriminate between asymptomatic and presymptomatic SARS-CoV-2pos subjects. Cell Res. 2021;31:1148-62.

86. Zhao XN, You Y, Cui XM, et al. Single-cell immune profiling reveals distinct immune response in asymptomatic COVID-19 patients. Signal Transduct Target Ther. 2021;6:342.

87. Bourgoin P, Soliveres T, Barbaresi A, et al. CD169 and CD64 could help differentiate bacterial from CoVID-19 or other viral infections in the Emergency Department. Cytometry A. 2021;99:435-45.

88. Affandi AJ, Olesek K, Grabowska J, et al. CD169 defines activated CD14+ monocytes with enhanced CD8+ T cell activation capacity. Front Immunol. 2021;12:697840.

89. Michel M, Malergue F, Ait Belkacem I, et al. A rapid, easy, and scalable whole blood monocyte CD169 assay for outpatient screening during SARS-CoV-2 outbreak, and potentially other emerging disease outbreaks. SAGE Open Med. 2022;10:20503121221115483.

90. Minutolo A, Petrone V, Fanelli M, et al. High CD169 monocyte/lymphocyte ratio reflects immunophenotype disruption and oxygen need in COVID-19 patients. Pathogens. 2021;10:1639.

91. Fanelli M, Petrone V, Maracchioni C, et al. Persistence of circulating CD169+monocytes and HLA-DR downregulation underline the immune response impairment in PASC individuals: the potential contribution of different COVID-19 pandemic waves. Curr Res Microb Sci. 2024;6:100215.

92. Balestrieri E, Minutolo A, Petrone V, et al. Evidence of the pathogenic HERV-W envelope expression in T lymphocytes in association with the respiratory outcome of COVID-19 patients. EBioMedicine. 2021;66:103341.

93. Munblit D, O'Hara ME, Akrami A, Perego E, Olliaro P, Needham DM. Long COVID: aiming for a consensus. Lancet Respir Med. 2022;10:632-4.

94. Sherif ZA, Gomez CR, Connors TJ, Henrich TJ, Reeves WB. RECOVER Mechanistic Pathway Task Force. Pathogenic mechanisms of post-acute sequelae of SARS-CoV-2 infection (PASC). Elife. 2023;12:e86002.

95. Parotto M, Gyöngyösi M, Howe K, et al. Post-acute sequelae of COVID-19: understanding and addressing the burden of multisystem manifestations. Lancet Respir Med. 2023;11:739-54.

96. Ryan FJ, Hope CM, Masavuli MG, et al. Long-term perturbation of the peripheral immune system months after SARS-CoV-2 infection. BMC Med. 2022;20:26.

97. Phetsouphanh C, Darley DR, Wilson DB, et al. Immunological dysfunction persists for 8 months following initial mild-to-moderate SARS-CoV-2 infection. Nat Immunol. 2022;23:210-6.

98. Santa Cruz A, Mendes-Frias A, Azarias-da-Silva M, et al. Post-acute sequelae of COVID-19 is characterized by diminished peripheral CD8+β7 integrin+ T cells and anti-SARS-CoV-2 IgA response. Nat Commun. 2023;14:1772.

99. Woodruff MC, Bonham KS, Anam FA, et al. Chronic inflammation, neutrophil activity, and autoreactivity splits long COVID. Nat Commun. 2023;14:4201.

100. Minutolo A, Petrone V, Fanelli M, et al. Thymosin alpha 1 restores the immune homeostasis in lymphocytes during Post-Acute sequelae of SARS-CoV-2 infection. Int Immunopharmacol. 2023;118:110055.

101. Sousa KP, Rossi I, Abdullahi M, Ramirez MI, Stratton D, Inal JM. Isolation and characterization of extracellular vesicles and future directions in diagnosis and therapy. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2023;15:e1835.

102. Qiu L, Liu X, Zhu L, Luo L, Sun N, Pei R. Current advances in technologies for single extracellular vesicle analysis and its clinical applications in cancer diagnosis. Biosensors. 2023;13:129.

103. Welsh JA, Arkesteijn GJA, Bremer M, et al. A compendium of single extracellular vesicle flow cytometry. J Extracell Vesicles. 2023;12:e12299.

104. Woud WW, van der Pol E, Mul E, et al. An imaging flow cytometry-based methodology for the analysis of single extracellular vesicles in unprocessed human plasma. Commun Biol. 2022;5:633.

105. Ender F, Zamzow P, Bubnoff NV, Gieseler F. Detection and quantification of extracellular vesicles via FACS: membrane labeling matters! Int J Mol Sci. 2019;21:291.

106. Hilton SH, White IM. Advances in the analysis of single extracellular vesicles: a critical review. Sens Actuators Rep. 2021;3:100052.

107. Buzas EI. The roles of extracellular vesicles in the immune system. Nat Rev Immunol. 2023;23:236-50.

108. Davidson SM, Boulanger CM, Aikawa E, et al. Methods for the identification and characterization of extracellular vesicles in cardiovascular studies: from exosomes to microvesicles. Cardiovasc Res. 2023;119:45-63.

109. Chen AT, Wang CY, Zhu WL, Chen W. Coagulation disorders and thrombosis in COVID-19 patients and a possible mechanism involving endothelial cells: a review. Aging Dis. 2022;13:144-56.

110. Biswas I, Khan GA. Coagulation disorders in COVID-19: role of Toll-like receptors. J Inflamm Res. 2020;13:823-8.

111. Mezine F, Guerin CL, Philippe A, et al. Increased circulating CD62E+ endothelial extracellular vesicles predict severity and in- hospital mortality of COVID-19 patients. Stem Cell Rev Rep. 2023;19:114-9.

112. Eustes AS, Dayal S. The role of platelet-derived extracellular vesicles in immune-mediated thrombosis. Int J Mol Sci. 2022;23:7837.

113. Goubran H, Seghatchian J, Sabry W, Ragab G, Burnouf T. Platelet and extracellular vesicles in COVID-19 infection and its vaccines. Transfus Apher Sci. 2022;61:103459.

114. Puhm F, Allaeys I, Lacasse E, et al. Platelet activation by SARS-CoV-2 implicates the release of active tissue factor by infected cells. Blood Adv. 2022;6:3593-605.

115. Eldahshan M, Byomy MA, Alsadek AM, et al. Prognostic significance of platelet activation marker CD62P in hospitalized Covid-19 patients. Clin Lab. 2022;68.

116. Setua S, Thangaraju K, Dzieciatkowska M, et al. Coagulation potential and the integrated omics of extracellular vesicles from COVID-19 positive patient plasma. Sci Rep. 2022;12:22191.

117. Brambilla M, Frigerio R, Becchetti A, et al. Head-to-head comparison of tissue factor-dependent procoagulant potential of small and large extracellular vesicles in healthy subjects and in patients with SARS-CoV-2 infection. Biology. 2023;12:1233.

118. Burrello J, Caporali E, Gauthier LG, et al. Risk stratification of patients with SARS-CoV-2 by tissue factor expression in circulating extracellular vesicles. Vascul Pharmacol. 2022;145:106999.

119. Balbi C, Burrello J, Bolis S, et al. Circulating extracellular vesicles are endowed with enhanced procoagulant activity in SARS-CoV-2 infection. EBioMedicine. 2021;67:103369.

120. Campello E, Radu CM, Simion C, et al. Longitudinal trend of plasma concentrations of extracellular vesicles in patients hospitalized for COVID-19. Front Cell Dev Biol. 2021;9:770463.

121. Aharon A, Dangot A, Kinaani F, et al. Extracellular vesicles of COVID-19 patients reflect inflammation, thrombogenicity, and disease severity. Int J Mol Sci. 2023;24:5918.

122. Taxiarchis A, Bellander BM, Antovic J, et al. Extracellular vesicles in plasma and cerebrospinal fluid in patients with COVID-19 and neurological symptoms. Int J Lab Hematol. 2024;46:42-9.

123. Yim KHW, Borgoni S, Chahwan R. Serum extracellular vesicles profiling is associated with COVID-19 progression and immune responses. J Extracell Biol. 2022;1:e37.

124. Chen L, Chen R, Yao M, et al. COVID-19 plasma exosomes promote proinflammatory immune responses in peripheral blood mononuclear cells. Sci Rep. 2022;12:21779.

125. Caponnetto F, De Martino M, Stefanizzi D, et al. Extracellular vesicle features are associated with COVID-19 severity. J Cell Mol Med. 2023;27:4107-17.

126. Cummings SE, Delaney SP, St-Denis Bissonnette F, et al. SARS-CoV-2 antigen-carrying extracellular vesicles activate T cell responses in a human immunogenicity model. iScience. 2024;27:108708.

127. Martins-Gonçalves R, Hottz ED, Bozza PT. Acute to post-acute COVID-19 thromboinflammation persistence: mechanisms and potential consequences. Curr Res Immunol. 2023;4:100058.

128. Raman B, Bluemke DA, Lüscher TF, Neubauer S. Long COVID: post-acute sequelae of COVID-19 with a cardiovascular focus. Eur Heart J. 2022;43:1157-72.

129. Monje M, Iwasaki A. The neurobiology of long COVID. Neuron. 2022;110:3484-96.

130. George MS, Sanchez J, Rollings C, et al. Extracellular vesicles in COVID-19 convalescence can regulate T cell metabolism and function. iScience. 2023;26:107280.

131. Lamers MM, Haagmans BL. SARS-CoV-2 pathogenesis. Nat Rev Microbiol. 2022;20:270-84.

132. Amarasinghe I, Phillips W, Hill AF, et al. Cellular communication through extracellular vesicles and lipid droplets. J Extracell Biol. 2023;2:e77.

133. Stratman AN, Crewe C, Stahl PD. The microenvironment-a general hypothesis on the homeostatic function of extracellular vesicles. FASEB Bioadv. 2022;4:284-97.

134. Visan KS, Lobb RJ, Ham S, et al. Comparative analysis of tangential flow filtration and ultracentrifugation, both combined with subsequent size exclusion chromatography, for the isolation of small extracellular vesicles. J Extracell Vesicles. 2022;11:e12266.

135. Lam SM, Huang X, Shui G. Neurological aspects of SARS-CoV-2 infection: lipoproteins and exosomes as Trojan horses. Trends Endocrinol Metab. 2022;33:554-68.

136. Del Molino Del Barrio I, Hayday TS, Laing AG, Hayday AC, Di Rosa F. COVID-19: using high-throughput flow cytometry to dissect clinical heterogeneity. Cytometry A. 2023;103:117-26.

137. Kuiper M, van de Nes A, Nieuwland R, Varga Z, van der Pol E. Reliable measurements of extracellular vesicles by clinical flow cytometry. Am J Reprod Immunol. 2021;85:e13350.

138. Morales-Kastresana A, Welsh JA, Jones JC. Detection and sorting of extracellular vesicles and viruses using nanoFACS. Curr Protoc Cytom. 2020;95:e81.

Extracellular Vesicles and Circulating Nucleic Acids
ISSN 2767-6641 (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/