REFERENCES

1. Lovejoy CO. The natural history of human gait and posture. Part 3. The knee. Gait Posture 2007;25:325-41.

2. Richard D, Liu Z, Cao J, et al. Evolutionary selection and constraint on human knee chondrocyte regulation impacts osteoarthritis risk. Cell 2020;181:362-381.e28.

3. Nganvongpanit K, Soponteerakul R, Kaewkumpai P, et al. Osteoarthritis in two marine mammals and 22 land mammals: learning from skeletal remains. J Anat 2017;231:140-55.

4. Greer M, Greer JK, Gillingham J. Osteoarthritis in selected wild mammals. Available from: https://ojs.library.okstate.edu/osu/index.php/OAS/article/view/5052/4722 [Last accessed on 3 Jun 2024].

5. Duncan AE, Colman RJ, Kramer PA. Sex differences in spinal osteoarthritis in humans and rhesus monkeys (Macaca mulatta). Spine 2012;37:915-22.

6. Ouyang Z, Dong L, Yao F, et al. Cartilage-related collagens in osteoarthritis and rheumatoid arthritis: from pathogenesis to therapeutics. Int J Mol Sci 2023;24:9841.

7. Sanchez-Lopez E, Coras R, Torres A, Lane NE, Guma M. Synovial inflammation in osteoarthritis progression. Nat Rev Rheumatol 2022;18:258-75.

8. Jurca T, Józsa L, Suciu R, et al. Formulation of topical dosage forms containing synthetic and natural anti-inflammatory agents for the treatment of rheumatoid arthritis. Molecules 2020;26:24.

9. D'Arcy Y, Mantyh P, Yaksh T, et al. Treating osteoarthritis pain: mechanisms of action of acetaminophen, nonsteroidal anti-inflammatory drugs, opioids, and nerve growth factor antibodies. Postgrad Med 2021;133:879-94.

10. Aletaha D, Smolen JS. Diagnosis and management of rheumatoid arthritis: a review. JAMA 2018;320:1360-72.

11. Bedson J, Croft PR. The discordance between clinical and radiographic knee osteoarthritis: a systematic search and summary of the literature. BMC Musculoskelet Disord 2008;9:116.

12. Mathieu M, Martin-Jaular L, Lavieu G, Théry C. Specificities of secretion and uptake of exosomes and other extracellular vesicles for cell-to-cell communication. Nat Cell Biol 2019;21:9-17.

13. Ginini L, Billan S, Fridman E, Gil Z. Insight into extracellular vesicle-cell communication: from cell recognition to intracellular fate. Cells 2022;11:1375.

14. Boere J, van de Lest CH, Libregts SF, et al. Synovial fluid pretreatment with hyaluronidase facilitates isolation of CD44+ extracellular vesicles. J Extracell Vesicles 2016;5:31751.

15. Liang Y, Lehrich BM, Zheng S, Lu M. Emerging methods in biomarker identification for extracellular vesicle-based liquid biopsy. J Extracell Vesicles 2021;10:e12090.

16. Wen C, Xiao G. Advances in osteoarthritis research in 2021 and beyond. J Orthop Translat 2022;32:A1-2.

17. Cui A, Li H, Wang D, Zhong J, Chen Y, Lu H. Global, regional prevalence, incidence and risk factors of knee osteoarthritis in population-based studies. EClinicalMedicine 2020;29-30:100587.

18. McIlwraith CW, Frisbie DD, Kawcak CE. The horse as a model of naturally occurring osteoarthritis. Bone Joint Res 2012;1:297-309.

19. Leifer VP, Katz JN, Losina E. The burden of OA-health services and economics. Osteoarthritis Cartilage 2022;30:10-6.

20. Long H, Liu Q, Yin H, et al. Prevalence trends of site-specific osteoarthritis from 1990 to 2019: findings from the global burden of disease study 2019. Arthritis Rheumatol 2022;74:1172-83.

21. Chen D, Shen J, Zhao W, et al. Osteoarthritis: toward a comprehensive understanding of pathological mechanism. Bone Res 2017;5:16044.

22. Li Z, Huang Z, Bai L. Cell interplay in osteoarthritis. Frontiers in cell and developmental biology. Available from: https://www.frontiersin.org/articles/10.3389/fcell.2021.720477 [Last accessed on 3 Jun 2024].

23. Loeser RF, Goldring SR, Scanzello CR, Goldring MB. Osteoarthritis: a disease of the joint as an organ. Arthritis Rheum 2012;64:1697-707.

24. Tanaka Y. Rheumatoid arthritis. Inflamm Regen 2020;40:20.

25. Gibofsky A. Epidemiology, pathophysiology, and diagnosis of rheumatoid arthritis: a synopsis. Available from: https://www.ajmc.com/view/ace017_may14_ra-ce_gibofsky1_s128 [Last accessed on 3 Jun 2024].

26. Stolwijk C, Boonen A, van Tubergen A, Reveille JD. Epidemiology of spondyloarthritis. Rheum Dis Clin North Am 2012;38:441-76.

27. Davis JC Jr, Mease PJ. Insights into the pathology and treatment of spondyloarthritis: from the bench to the clinic. Semin Arthritis Rheum 2008;38:83-100.

28. Taitt HA, Balakrishnan R. Spondyloarthritides. Immunol Allergy Clin North Am 2023;43:593-612.

29. Sadegh S, Skelton J, Anastasi E, et al. Lacking mechanistic disease definitions and corresponding association data hamper progress in network medicine and beyond. Nat Commun 2023;14:1662.

30. Edwards SW, Hallett MB. Seeing the wood for the trees: the forgotten role of neutrophils in rheumatoid arthritis. Immunol Today 1997;18:320-4.

31. Kormelink T, Mol S, de Jong EC, Wauben MHM. The role of extracellular vesicles when innate meets adaptive. Semin Immunopathol 2018;40:439-52.

32. Coletto LA, Rizzo C, Guggino G, Caporali R, Alivernini S, D'Agostino MA. The role of neutrophils in spondyloarthritis: a journey across the spectrum of disease manifestations. Int J Mol Sci 2023;24:4108.

33. Zhou S, Lu H, Xiong M. Identifying immune cell infiltration and effective diagnostic biomarkers in rheumatoid arthritis by bioinformatics analysis. Front Immunol 2021;12:726747.

34. Baccarin RYA, Seidel SRT, Michelacci YM, Tokawa PKA, Oliveira TM. Osteoarthritis: a common disease that should be avoided in the athletic horse's life. Anim Front 2022;12:25-36.

35. Andersen C, Jacobsen S, Walters M, Lindegaard C. A detailed macroscopic scoring system for experimental post-traumatic Osteoarthritis in the equine middle carpal joint. BMC Res Notes 2022;15:226.

36. Malda J, Benders KE, Klein TJ, et al. Comparative study of depth-dependent characteristics of equine and human osteochondral tissue from the medial and lateral femoral condyles. Osteoarthritis Cartilage 2012;20:1147-51.

37. Moran CJ, Ramesh A, Brama PA, O'Byrne JM, O'Brien FJ, Levingstone TJ. The benefits and limitations of animal models for translational research in cartilage repair. J Exp Orthop 2016;3:1.

38. McCoy AM. Animal models of osteoarthritis: comparisons and key considerations. Vet Pathol 2015;52:803-18.

39. Te Moller NCR, Mohammadi A, Plomp S, et al. Structural, compositional, and functional effects of blunt and sharp cartilage damage on the joint: a 9-month equine groove model study. J Orthop Res 2021;39:2363-75.

40. Maninchedda U, Lepage OM, Gangl M, et al. Development of an equine groove model to induce metacarpophalangeal osteoarthritis: a pilot study on 6 horses. PLoS One 2015;10:e0115089.

41. de Grauw JC, van de Lest CH, van Weeren PR. Inflammatory mediators and cartilage biomarkers in synovial fluid after a single inflammatory insult: a longitudinal experimental study. Arthritis Res Ther 2009;11:R35.

42. Cokelaere SM, Plomp SGM, de Boef E, et al. Sustained intra-articular release of celecoxib in an equine repeated LPS synovitis model. Eur J Pharm Biopharm 2018;128:327-36.

43. Kheir E, Shaw D. Hyaline articular cartilage. Orthop Trauma 2009;23:450-5.

44. Dowthwaite GP, Bishop JC, Redman SN, et al. The surface of articular cartilage contains a progenitor cell population. J Cell Sci 2004;117:889-97.

45. Alsalameh S, Amin R, Gemba T, Lotz M. Identification of mesenchymal progenitor cells in normal and osteoarthritic human articular cartilage. Arthritis Rheum 2004;50:1522-32.

46. Kemble S, Croft AP. Critical role of synovial tissue–resident macrophage and fibroblast subsets in the persistence of joint inflammation. Available from: https://www.frontiersin.org/articles/10.3389/fimmu.2021.715894 [Last accessed on 3 Jun 2024].

47. Hui AY, McCarty WJ, Masuda K, Firestein GS, Sah RL. A systems biology approach to synovial joint lubrication in health, injury, and disease. Wiley Interdiscip Rev Syst Biol Med 2012;4:15-37.

48. Oliviero F, Lo Nigro A, Bernardi D, et al. A comparative study of serum and synovial fluid lipoprotein levels in patients with various arthritides. Clin Chim Acta 2012;413:303-7.

49. Prete PE, Gurakar-Osborne A, Kashyap ML. Synovial fluid lipoproteins: review of current concepts and new directions. Semin Arthritis Rheum 1993;23:79-89.

50. Ben-Trad L, Matei CI, Sava MM, et al. Synovial extracellular vesicles: structure and role in synovial fluid tribological performances. Int J Mol Sci 2022;23:11998.

51. Alghamdi M, Alamry SA, Bahlas SM, Uversky VN, Redwan EM. Circulating extracellular vesicles and rheumatoid arthritis: a proteomic analysis. Cell Mol Life Sci 2021;79:25.

52. Zhang X, Huebner JL, Kraus VB. Extracellular vesicles as biological indicators and potential sources of autologous therapeutics in osteoarthritis. Int J Mol Sci 2021;22:8351.

53. Mustonen AM, Lehmonen N, Oikari S, et al. Counts of hyaluronic acid-containing extracellular vesicles decrease in naturally occurring equine osteoarthritis. Sci Rep 2022;12:17550.

54. Kolhe R, Hunter M, Liu S, et al. Gender-specific differential expression of exosomal miRNA in synovial fluid of patients with osteoarthritis. Sci Rep 2017;7:2029.

55. Bahmani L, Ullah M. Different sourced extracellular vesicles and their potential applications in clinical treatments. Cells 2022;11:1989.

56. Lötvall J, Hill AF, Hochberg F, et al. Minimal experimental requirements for definition of extracellular vesicles and their functions: a position statement from the international society for extracellular vesicles. J Extracell Vesicles 2014;3:26913.

57. Sánchez G, Bunn KE, Pua HH, Rafat M. Extracellular vesicles: mediators of intercellular communication in tissue injury and disease. Cell Commun Signal 2021;19:104.

58. Crewe C, Joffin N, Rutkowski JM, et al. An endothelial-to-adipocyte extracellular vesicle axis governed by metabolic state. Cell 2018;175:695-708.e13.

59. van Niel G, Carter DRF, Clayton A, Lambert DW, Raposo G, Vader P. Challenges and directions in studying cell-cell communication by extracellular vesicles. Nat Rev Mol Cell Biol 2022;23:369-82.

60. Keerthikumar S, Chisanga D, Ariyaratne D, et al. ExoCarta: a web-based compendium of exosomal cargo. J Mol Biol 2016;428:688-92.

61. Pathan M, Fonseka P, Chitti SV, et al. Vesiclepedia 2019: a compendium of RNA, proteins, lipids and metabolites in extracellular vesicles. Nucleic Acids Res 2019;47:D516-9.

62. Kim DK, Lee J, Kim SR, et al. EVpedia: a community web portal for extracellular vesicles research. Bioinformatics 2015;31:933-9.

63. Verweij FJ, Balaj L, Boulanger CM, et al. The power of imaging to understand extracellular vesicle biology in vivo. Nat Methods 2021;18:1013-26.

64. Catalano M, O'Driscoll L. Inhibiting extracellular vesicles formation and release: a review of EV inhibitors. J Extracell Vesicles 2020;9:1703244.

65. Buzas EI, György B, Nagy G, Falus A, Gay S. Emerging role of extracellular vesicles in inflammatory diseases. Nat Rev Rheumatol 2014;10:356-64.

66. Pollet H, Conrard L, Cloos AS, Tyteca D. Plasma membrane lipid domains as platforms for vesicle biogenesis and shedding? Biomolecules 2018;8:94.

67. Welsh JA, Goberdhan DCI, O'Driscoll L, et al. MISEV Consortium. Minimal information for studies of extracellular vesicles (MISEV2023): from basic to advanced approaches. J Extracell Vesicles 2024;13:e12404.

68. Abels ER, Breakefield XO. Introduction to extracellular vesicles: biogenesis, RNA cargo selection, content, release, and uptake. Cell Mol Neurobiol 2016;36:301-12.

69. Anand S, Samuel M, Kumar S, Mathivanan S. Ticket to a bubble ride: cargo sorting into exosomes and extracellular vesicles. Biochim Biophys Acta Proteins Proteom 2019;1867:140203.

70. Kehrloesser S, Cast O, Elliott TS, et al. Cell-of-origin-specific proteomics of extracellular vesicles. PNAS Nexus 2023;2:pgad107.

71. Cocucci E, Meldolesi J. Ectosomes and exosomes: shedding the confusion between extracellular vesicles. Trends Cell Biol 2015;25:364-72.

72. Withrow J, Murphy C, Liu Y, Hunter M, Fulzele S, Hamrick MW. Extracellular vesicles in the pathogenesis of rheumatoid arthritis and osteoarthritis. Arthritis Res Ther 2016;18:286.

73. Zhao Y, Xu J. Synovial fluid-derived exosomal lncRNA PCGEM1 as biomarker for the different stages of osteoarthritis. Int Orthop 2018;42:2865-72.

74. Jeon OH, Wilson DR, Clement CC, et al. Senescence cell-associated extracellular vesicles serve as osteoarthritis disease and therapeutic markers. JCI Insight 2019;4:125019.

75. Kay J, Upchurch KS. ACR/EULAR 2010 rheumatoid arthritis classification criteria. Rheumatology (Oxford) 2012;51 Suppl 6:vi5-9.

76. Foers AD, Garnham AL, Chatfield S, et al. Extracellular vesicles in synovial fluid from rheumatoid arthritis patients contain miRNAs with capacity to modulate inflammation. Int J Mol Sci 2021;22:4910.

77. Foers AD, Dagley LF, Chatfield S, et al. Proteomic analysis of extracellular vesicles reveals an immunogenic cargo in rheumatoid arthritis synovial fluid. Clin Transl Immunology 2020;9:e1185.

78. Cambria C, Ingegnoli F, Borzi E, et al. Synovial fluid-derived extracellular vesicles of patients with arthritides contribute to hippocampal synaptic dysfunctions and increase with mood disorders severity in humans. Cells 2022;11:2276.

79. Manganelli V, Recalchi S, Capozzi A, et al. Autophagy induces protein carbamylation in fibroblast-like synoviocytes from patients with rheumatoid arthritis. Rheumatology 2018;57:2032-41.

80. Ni Z, Zhou S, Li S, et al. Exosomes: roles and therapeutic potential in osteoarthritis. Bone Res 2020;8:25.

81. Wang L, Wang C, Jia X, Yu J. Circulating exosomal miR-17 inhibits the induction of regulatory T cells via suppressing TGFBR II expression in rheumatoid arthritis. Cell Physiol Biochem 2018;50:1754-63.

82. Rani S, Lai A, Nair S, et al. Extracellular vesicles as mediators of cell-cell communication in ovarian cancer and beyond - a lipids focus. Cytokine Growth Factor Rev 2023;73:52-68.

83. Vanherle S, Guns J, Loix M, et al. Extracellular vesicle-associated cholesterol supports the regenerative functions of macrophages in the brain. J Extracell Vesicles 2023;12:e12394.

84. Lorent JH, Levental KR, Ganesan L, et al. Plasma membranes are asymmetric in lipid unsaturation, packing and protein shape. Nat Chem Biol 2020;16:644-52.

85. Skotland T, Sagini K, Sandvig K, Llorente A. An emerging focus on lipids in extracellular vesicles. Adv Drug Deliv Rev 2020;159:308-21.

86. Skotland T, Llorente A, Sandvig K. Lipids in extracellular vesicles: what can be learned about membrane structure and function? Cold Spring Harb Perspect Biol 2023;15:a041415.

87. Sasaki T, Takasuga S, Sasaki J, et al. Mammalian phosphoinositide kinases and phosphatases. Prog Lipid Res 2009;48:307-43.

88. Yamakawa T, Nagai Y. Glycolipids at the cell surface and their biological functions. Trends Biochem Sci 1978;3:128-31.

89. Róg T, Vattulainen I. Cholesterol, sphingolipids, and glycolipids: what do we know about their role in raft-like membranes? Chem Phys Lipids 2014;184:82-104.

90. Llorente A, Skotland T, Sylvänne T, et al. Molecular lipidomics of exosomes released by PC-3 prostate cancer cells. Biochim Biophys Acta 2013;1831:1302-9.

91. Skotland T, Hessvik NP, Sandvig K, Llorente A. Exosomal lipid composition and the role of ether lipids and phosphoinositides in exosome biology. J Lipid Res 2019;60:9-18.

92. Sun Y, Saito K, Saito Y. Lipid profile characterization and lipoprotein comparison of extracellular vesicles from human plasma and serum. Metabolites 2019;9:259.

93. Donoso-Quezada J, Ayala-Mar S, González-Valdez J. The role of lipids in exosome biology and intercellular communication: Function, analytics and applications. Traffic 2021;22:204-20.

94. Jin X, Xia T, Luo S, Zhang Y, Xia Y, Yin H. Exosomal lipid PI4P regulates small extracellular vesicle secretion by modulating intraluminal vesicle formation. J Extracell Vesicles 2023;12:e12319.

95. Vidal M. Exosomes and GPI-anchored proteins: judicious pairs for investigating biomarkers from body fluids. Adv Drug Deliv Rev 2020;161-162:110-23.

96. Sapoń K, Mańka R, Janas T, Janas T. The role of lipid rafts in vesicle formation. J Cell Sci 2023;136:jcs260887.

97. Ouweneel AB, Thomas MJ, Sorci-Thomas MG. The ins and outs of lipid rafts: functions in intracellular cholesterol homeostasis, microparticles, and cell membranes: thematic review series: biology of lipid rafts. J Lipid Res 2020;61:676-86.

98. Trajkovic K, Hsu C, Chiantia S, et al. Ceramide triggers budding of exosome vesicles into multivesicular endosomes. Science 2008;319:1244-7.

99. Zhang H, Freitas D, Kim HS, et al. Identification of distinct nanoparticles and subsets of extracellular vesicles by asymmetric flow field-flow fractionation. Nat Cell Biol 2018;20:332-43.

100. Lobasso S, Tanzarella P, Mannavola F, et al. A lipidomic approach to identify potential biomarkers in exosomes from melanoma cells with different metastatic potential. Available from: https://www.frontiersin.org/articles/10.3389/fphys.2021.748895 [Last accessed on 3 Jun 2024].

101. Melero-Fernandez de Mera RM, Villaseñor A, Rojo D, et al. Ceramide composition in exosomes for characterization of glioblastoma stem-like cell phenotypes. Available from: https://www.frontiersin.org/articles/10.3389/fonc.2021.788100 [Last accessed on 3 Jun 2024].

102. Elmallah MIY, Ortega-Deballon P, Hermite L, Pais-De-Barros JP, Gobbo J, Garrido C. Lipidomic profiling of exosomes from colorectal cancer cells and patients reveals potential biomarkers. Mol Oncol 2022;16:2710-8.

103. Brzozowski JS, Jankowski H, Bond DR, et al. Lipidomic profiling of extracellular vesicles derived from prostate and prostate cancer cell lines. Lipids Health Dis 2018;17:211.

104. Tao L, Zhou J, Yuan C, et al. Metabolomics identifies serum and exosomes metabolite markers of pancreatic cancer. Metabolomics 2019;15:86.

105. Fan TWM, Zhang X, Wang C, et al. Exosomal lipids for classifying early and late stage non-small cell lung cancer. Anal Chim Acta 2018;1037:256-64.

106. Burrello J, Biemmi V, Dei Cas M, et al. Sphingolipid composition of circulating extracellular vesicles after myocardial ischemia. Sci Rep 2020;10:16182.

107. Griffiths CE, Strober BE, van de Kerkhof P, et al. ACCEPT Study Group. Comparison of ustekinumab and etanercept for moderate-to-severe psoriasis. N Engl J Med 2010;362:118-28.

108. Paolino G, Buratta S, Mercuri SR, et al. Lipidic profile changes in exosomes and microvesicles derived from plasma of monoclonal antibody-treated psoriatic patients. Front Cell Dev Biol 2022;10:923769.

109. Blandin A, Dugail I, Hilairet G, et al. Lipidomic analysis of adipose-derived extracellular vesicles reveals specific EV lipid sorting informative of the obesity metabolic state. Cell Rep 2023;42:112169.

110. Su H, Rustam YH, Masters CL, et al. Characterization of brain-derived extracellular vesicle lipids in Alzheimer's disease. J Extracell Vesicles 2021;10:e12089.

111. Perpiñá-Clérigues C, Mellado S, Català-Senent JF, et al. Lipidomic landscape of circulating extracellular vesicles isolated from adolescents exposed to ethanol intoxication: a sex difference study. Biol Sex Differ 2023;14:22.

112. Hussey GS, Pineda Molina C, Cramer MC, et al. Lipidomics and RNA sequencing reveal a novel subpopulation of nanovesicle within extracellular matrix biomaterials. Sci Adv 2020;6:eaay4361.

113. Nirujogi TS, Kotha SR, Chung S, et al. Lipidomic profiling of bronchoalveolar lavage fluid extracellular vesicles indicates their involvement in lipopolysaccharide-induced acute lung injury. J Innate Immun 2022;14:555-68.

114. Mustonen AM, Lehmonen N, Paakkonen T, et al. Equine osteoarthritis modifies fatty acid signatures in synovial fluid and its extracellular vesicles. Arthritis Res Ther 2023;25:39.

115. Verderio C, Gabrielli M, Giussani P. Role of sphingolipids in the biogenesis and biological activity of extracellular vesicles. J Lipid Res 2018;59:1325-40.

116. Menck K, Sönmezer C, Worst TS, et al. Neutral sphingomyelinases control extracellular vesicles budding from the plasma membrane. J Extracell Vesicles 2017;6:1378056.

117. Dichlberger A, Zhou K, Bäck N, et al. LAPTM4B controls the sphingolipid and ether lipid signature of small extracellular vesicles. Biochim Biophys Acta Mol Cell Biol Lipids 2021;1866:158855.

118. Goldring MB, Otero M. Inflammation in osteoarthritis. Curr Opin Rheumatol 2011;23:471-8.

119. van de Water E, Oosterlinck M, Dumoulin M, et al. The preventive effects of two nutraceuticals on experimentally induced acute synovitis. Equine Vet J 2017;49:532-8.

120. van Loon JP, de Grauw JC, Brunott A, Weerts EA, van Weeren PR. Upregulation of articular synovial membrane μ-opioid-like receptors in an acute equine synovitis model. Vet J 2013;196:40-6.

121. Varela L, van de Lest CHA, Boere J, et al. Acute joint inflammation induces a sharp increase in the number of synovial fluid EVs and modifies their phospholipid profile. Biochim Biophys Acta Mol Cell Biol Lipids 2023;1868:159367.

122. Gasser O, Hess C, Miot S, Deon C, Sanchez JC, Schifferli JA. Characterisation and properties of ectosomes released by human polymorphonuclear neutrophils. Exp Cell Res 2003;285:243-57.

123. Mol S, Hafkamp FMJ, Varela L, et al. Efficient neutrophil activation requires two simultaneous activating stimuli. Int J Mol Sci 2021;22:10106.

124. Varela L, Mol S, Taanman-Kueter EW, et al. Lipidome profiling of human and equine neutrophil-derived extracellular vesicles and their potential contribution to the ensemble of synovial fluid-derived extracellular vesicles during joint inflammation. Available from: https://www.biorxiv.org/content/10.1101/2023.11.17.567580v1 [Last accessed on 3 Jun 2024].

125. Chatterjee S, Balram A, Li W. Convergence: lactosylceramide-centric signaling pathways induce inflammation, oxidative stress, and other phenotypic outcomes. Int J Mol Sci 2021;22:1816.

126. Symington FW. CDw17: a neutrophil glycolipid antigen regulated by activation. J Immunol 1989;142:2784-90.

127. Symington FW, Murray WA, Bearman SI, Hakomori S. Intracellular localization of lactosylceramide, the major human neutrophil glycosphingolipid. J Biol Chem 1987;262:11356-63.

128. Iwabuchi K, Nagaoka I. Lactosylceramide-enriched glycosphingolipid signaling domain mediates superoxide generation from human neutrophils. Blood 2002;100:1454-64.

129. Nakamura H, Murayama T. Role of sphingolipids in arachidonic acid metabolism. J Pharmacol Sci 2014;124:307-12.

130. Nakayama H, Nagafuku M, Suzuki A, Iwabuchi K, Inokuchi JI. The regulatory roles of glycosphingolipid-enriched lipid rafts in immune systems. FEBS Lett 2018;592:3921-42.

131. Qu F, Zhang H, Zhang M, Hu P. Sphingolipidomic profiling of rat serum by UPLC-Q-TOF-MS: application to rheumatoid arthritis study. Molecules 2018;23:1324.

132. Lindberg A, Tornhamre S, Mugnai S, Lindgren J. Ionophore A23187-induced leukotriene biosynthesis in equine granulocytes-neutrophils, but not eosinophils require exogenous arachidonic acid. Biochim Biophys Acta 1998;1391:247-55.

133. Anderson SL, Singh B. Equine neutrophils and their role in ischemia reperfusion injury and lung inflammation. Cell Tissue Res 2018;371:639-48.

134. Ba Q, Hei Y, Dighe A, et al. Proteotype coevolution and quantitative diversity across 11 mammalian species. Sci Adv 2022;8:eabn0756.

135. Merola JF, Espinoza LR, Fleischmann R. Distinguishing rheumatoid arthritis from psoriatic arthritis. RMD Open 2018;4:e000656.

136. Generali E, Bose T, Selmi C, Voncken JW, Damoiseaux JGMC. Nature versus nurture in the spectrum of rheumatic diseases: classification of spondyloarthritis as autoimmune or autoinflammatory. Autoimmun Rev 2018;17:935-41.

137. Loh JT, Lam KP. Neutrophils in the pathogenesis of rheumatic diseases. Rheumatol Immunol Res 2022;3:120-7.

138. Mol S, Taanman-Kueter EWM, van der Steen BA, et al. Hyaluronic acid in synovial fluid prevents neutrophil activation in spondyloarthritis. Int J Mol Sci 2023;24:3066.

139. Angelini F, Widera P, Mobasheri A, et al. Osteoarthritis endotype discovery via clustering of biochemical marker data. Ann Rheum Dis 2022;81:666-75.

140. Katz JN, Arant KR, Loeser RF. Diagnosis and treatment of hip and knee osteoarthritis: a review. JAMA 2021;325:568-78.

141. Clarke E, Varela L, Jenkins RE, et al. Proteome and phospholipidome interrelationship of synovial fluid-derived extracellular vesicles in equine osteoarthritis: an exploratory “multi-omics” study to identify composite biomarkers. Biochem Biophys Rep 2024;37:101635.

142. Attur MG, Dave M, Akamatsu M, Katoh M, Amin AR. Osteoarthritis or osteoarthrosis: the definition of inflammation becomes a semantic issue in the genomic era of molecular medicine. Osteoarthritis Cartilage 2002;10:1-4.

143. Théry C, Witwer KW, Aikawa E, et al. Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. J Extracell Vesicles 2018;7:1535750.

144. Witwer KW, Goberdhan DC, O'Driscoll L, et al. Updating MISEV: evolving the minimal requirements for studies of extracellular vesicles. J Extracell Vesicles 2021;10:e12182.

145. van Deun J, Mestdagh P, Agostinis P, et al; EV-TRACK Consortium. EV-TRACK: transparent reporting and centralizing knowledge in extracellular vesicle research. Nat Methods 2017;14:228-32.

146. Erdbrügger U, Blijdorp CJ, Bijnsdorp IV, et al. Urinary extracellular vesicles: a position paper by the urine task force of the international society for extracellular vesicles. J Extracell Vesicles 2021;10:e12093.

147. Clayton A, Boilard E, Buzas EI, et al. Considerations towards a roadmap for collection, handling and storage of blood extracellular vesicles. J Extracell Vesicles 2019;8:1647027.

148. Foers AD, Chatfield S, Dagley LF, et al. Enrichment of extracellular vesicles from human synovial fluid using size exclusion chromatography. J Extracell Vesicles 2018;7:1490145.

Extracellular Vesicles and Circulating Nucleic Acids
ISSN 2767-6641 (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/