REFERENCES
1. Chutipongtanate S, Morrow AL, Newburg DS. Human milk extracellular vesicles: a biological system with clinical implications. Cells 2022;11:2345.
2. Ngu A, Munir J, Zempleni J. Milk-borne small extracellular vesicles: kinetics and mechanisms of transport, distribution, and elimination. Extracell Vesicles Circ Nucl Acids 2023;4:339-46.
3. Freiría-Martínez L, Iglesias-Martínez-Almeida M, Rodríguez-Jamardo C, et al. Proteomic analysis of exosomes derived from human mature milk and colostrum of mothers with term, late preterm, or very preterm delivery. Anal Methods 2023;15:4905-17.
4. Meng Z, Zhou D, Lv D, et al. Human milk extracellular vesicles enhance muscle growth and physical performance of immature mice associating with Akt/mTOR/p70s6k signaling pathway. J Nanobiotechnology 2023;21:304.
5. Chutipongtanate S, Cetinkaya H, Zhang X, et al. Prenatal SARS-CoV-2 infection alters postpartum human milk-derived extracellular vesicles. bioRxiv 2023;Online ahead of print:2023.06.01.543234.
6. Peng W, Han J, Li S, et al. The association of human milk feeding with short-term health outcomes among chinese very/extremely low birth weight infants. J Hum Lact 2022;38:670-7.
7. Royo F, Théry C, Falcón-Pérez JM, Nieuwland R, Witwer KW. Methods for separation and characterization of extracellular vesicles: results of a worldwide survey performed by the ISEV rigor and standardization subcommittee. Cells 2020;9:1955.
8. Welsh JA, Goberdhan DCI, O'Driscoll L, et al. MISEV Consortium. Minimal information for studies of extracellular vesicles (MISEV2023): from basic to advanced approaches. J Extracell Vesicles 2024;13:e12404.
9. Hernell O. Human Milk vs. Cow’s milk and the evolution of infant formulas. In: Clemens R, Hernell O, Michaelsen K, editors. Milk and Milk Products in Human Nutrition. S. Karger AG; 2011. pp. 17-28.
10. Blans K, Hansen MS, Sørensen LV, et al. Pellet-free isolation of human and bovine milk extracellular vesicles by size-exclusion chromatography. J Extracell Vesicles 2017;6:1294340.
11. McMahon DJ, Oommen BS. Supramolecular structure of the casein micelle. J Dairy Sci 2008;91:1709-21.
12. Trejo R, Dokland T, Jurat-Fuentes J, Harte F. Cryo-transmission electron tomography of native casein micelles from bovine milk. J Dairy Sci 2011;94:5770-5.
13. Brennan K, Martin K, FitzGerald SP, et al. A comparison of methods for the isolation and separation of extracellular vesicles from protein and lipid particles in human serum. Sci Rep 2020;10:1039.
14. Somiya M, Yoshioka Y, Ochiya T. Biocompatibility of highly purified bovine milk-derived extracellular vesicles. J Extracell Vesicles 2018;7:1440132.
15. Rahman MM, Shimizu K, Yamauchi M, et al. Acidification effects on isolation of extracellular vesicles from bovine milk. PLoS One 2019;14:e0222613.
16. Benmoussa A, Michel S, Gilbert C, Provost P. Isolating multiple extracellular vesicles subsets, including exosomes and membrane vesicles, from bovine milk using sodium citrate and differential ultracentrifugation. Bio Protoc 2020;10:e3636.
17. Morozumi M, Izumi H, Shimizu T, Takeda Y. Comparison of isolation methods using commercially available kits for obtaining extracellular vesicles from cow milk. J Dairy Sci 2021;104:6463-71.
18. Liu Q, Hao H, Li J, et al. Oral administration of bovine milk-derived extracellular vesicles attenuates cartilage degeneration via modulating gut microbiota in DMM-induced mice. Nutrients 2023;15:747.
19. Chen CC, Chen LY, Li WT, et al. Influence of chymosin on physicochemical and hydrolysis characteristics of casein micelles and individual caseins. Nanomaterials 2021;11:2594.
20. Mukhopadhya A, Santoro J, O'Driscoll L. Extracellular vesicle separation from milk and infant milk formula using acid precipitation and ultracentrifugation. STAR Protoc 2021;2:100821.
21. Pietrzak-Fiećko R, Kamelska-Sadowska AM. The comparison of nutritional value of human milk with other mammals' milk. Nutrients 2020;12:1404.
22. Liao Y, Weber D, Xu W, Durbin-Johnson BP, Phinney BS, Lönnerdal B. Absolute quantification of human milk caseins and the whey/casein ratio during the first year of lactation. J Proteome Res 2017;16:4113-21.
23. Βasdeki AM, Fatouros DG, Βiliaderis CG, Moschakis T. Physicochemical properties of human breast milk during the second year of lactation. Curr Res Food Sci 2021;4:565-76.
24. Huppertz T, Fox P, Kelly A, Yada R. Proteins in food processing. In: Woodhead Publishing Cambridge, UK; 2018. pp. 1-654.
25. Hassanin AA, Osman A, Atallah OO, et al. Phylogenetic comparative analysis: chemical and biological features of caseins (alpha-S-1, alpha-S-2, beta- and kappa-) in domestic dairy animals. Front Vet Sci 2022;9:952319.
26. Tong L, Hao H, Zhang X, et al. Oral administration of bovine milk-derived extracellular vesicles alters the gut microbiota and enhances intestinal immunity in mice. Mol Nutr Food Res 2020;64:e1901251.
27. Chutipongtanate S, Greis KD. Multiplex biomarker screening assay for urinary extracellular vesicles study: a targeted label-free proteomic approach. Sci Rep 2018;8:15039.
28. Admyre C, Johansson SM, Qazi KR, et al. Exosomes with immune modulatory features are present in human breast milk. J Immunol 2007;179:1969-78.
29. van Herwijnen MJ, Zonneveld MI, Goerdayal S, et al. Comprehensive proteomic analysis of human milk-derived extracellular vesicles unveils a novel functional proteome distinct from other milk components. Mol Cell Proteomics 2016;15:3412-23.
30. Yamauchi M, Shimizu K, Rahman M, et al. Efficient method for isolation of exosomes from raw bovine milk. Drug Dev Ind Pharm 2019;45:359-64.