REFERENCES

1. Min L, Zhu S, Chen L, et al. Evaluation of circulating small extracellular vesicles derived miRNAs as biomarkers of early colon cancer: a comparison with plasma total miRNAs. J Extracell Vesicles 2019;8:1643670.

2. Rajkumar AP, Hye A, Lange J, et al. Next-generation RNA-sequencing of serum small extracellular vesicles discovers potential diagnostic biomarkers for dementia with lewy bodies. Am J Geriatr Psychiatry 2021;29:573-84.

3. Jiang YF, Wei SN, Geng N, et al. Evaluation of circulating small extracellular vesicle-derived miRNAs as diagnostic biomarkers for differentiating between different pathological types of early lung cancer. Sci Rep 2022;12:17201.

4. Buschmann D, Kirchner B, Hermann S, et al. Evaluation of serum extracellular vesicle isolation methods for profiling miRNAs by next-generation sequencing. J Extracell Vesicles 2018;7:1481321.

5. Grunt M, Failla AV, Stevic I, Hillebrand T, Schwarzenbach H. A novel assay for exosomal and cell-free miRNA isolation and quantification. RNA Biol 2020;17:425-40.

6. Jiawei S, Zhi C, Kewei T, Xiaoping L. Magnetic bead-based adsorption strategy for exosome isolation. Front Bioeng Biotechnol 2022;10:942077.

7. Ku A, Ravi N, Yang M, et al. A urinary extracellular vesicle microRNA biomarker discovery pipeline; from automated extracellular vesicle enrichment by acoustic trapping to microRNA sequencing. PLoS One 2019;14:e0217507.

8. Chen H, Yamakawa T, Inaba M, Nakano M, Suehiro J. Characterization of extra-cellular vesicle dielectrophoresis and estimation of its electric properties. Sensors 2022;22:3279.

9. Havers M, Broman A, Lenshof A, Laurell T. Advancement and obstacles in microfluidics-based isolation of extracellular vesicles. Anal Bioanal Chem 2023;415:1265-85.

10. Chen J, Li P, Zhang T, et al. Review on strategies and technologies for exosome isolation and purification. Front Bioeng Biotechnol 2021;9:811971.

11. Northrop-Albrecht EJ, Taylor WR, Huang BQ, Kisiel JB, Lucien F. Assessment of extracellular vesicle isolation methods from human stool supernatant. J Extracell Vesicles 2022;11:e12208.

12. Mol EA, Goumans MJ, Doevendans PA, Sluijter JPG, Vader P. Higher functionality of extracellular vesicles isolated using size-exclusion chromatography compared to ultracentrifugation. Nanomedicine 2017;13:2061-5.

13. Gámez-Valero A, Monguió-Tortajada M, Carreras-Planella L, Franquesa Ml, Beyer K, Borràs FE. Size-exclusion chromatography-based isolation minimally alters extracellular vesicles' characteristics compared to precipitating agents. Sci Rep 2016;6:33641.

14. An M, Wu J, Zhu J, Lubman DM. Comparison of an optimized ultracentrifugation method versus size-exclusion chromatography for isolation of exosomes from human serum. J Proteome Res 2018;17:3599-605.

15. Allelein S, Medina-Perez P, Lopes ALH, et al. Potential and challenges of specifically isolating extracellular vesicles from heterogeneous populations. Sci Rep 2021;11:11585.

16. Nordin JZ, Lee Y, Vader P, et al. Ultrafiltration with size-exclusion liquid chromatography for high yield isolation of extracellular vesicles preserving intact biophysical and functional properties. Nanomedicine 2015;11:879-83.

17. Shu S, Yang Y, Allen CL, et al. Purity and yield of melanoma exosomes are dependent on isolation method. J Extracell Vesicles 2020;9:1692401.

18. Gheinani AH, Vögeli M, Baumgartner U, et al. Improved isolation strategies to increase the yield and purity of human urinary exosomes for biomarker discovery. Sci Rep 2018;8:3945.

19. Oeyen E, Van Mol K, Baggerman G, et al. Ultrafiltration and size exclusion chromatography combined with asymmetrical-flow field-flow fractionation for the isolation and characterisation of extracellular vesicles from urine. J Extracell Vesicles 2018;7:1490143.

20. Koh YQ, Almughlliq FB, Vaswani K, Peiris HN, Mitchell MD. Exosome enrichment by ultracentrifugation and size exclusion chromatography. Front Biosci 2018;23:865-74.

21. Turner NP, Abeysinghe P, Kwan Cheung KA, et al. A comparison of blood plasma small extracellular vesicle enrichment strategies for proteomic analysis. Proteomes 2022;10:19.

22. Drees EEE, Roemer MGM, Groenewegen NJ, et al. Extracellular vesicle miRNA predict FDG-PET status in patients with classical Hodgkin Lymphoma. J Extracell Vesicles 2021;10:e12121.

23. Sundar IK, Li D, Rahman I. Small RNA-sequence analysis of plasma-derived extracellular vesicle miRNAs in smokers and patients with chronic obstructive pulmonary disease as circulating biomarkers. J Extracell Vesicles 2019;8:1684816.

24. Muñoz ER, Caccese JB, Wilson BE, et al. Effects of purposeful soccer heading on circulating small extracellular vesicle concentration and cargo. J Sport Health Sci 2021;10:122-30.

25. Flemming JP, Hill BL, Haque MW, et al. miRNA- and cytokine-associated extracellular vesicles mediate squamous cell carcinomas. J Extracell Vesicles 2020;9:1790159.

26. Meier S, Fisher B, Eketone K, et al. Calf and heifer development and the onset of puberty in dairy cows with divergent genetic merit for fertility. Available from: https://www.nzsap.org/proceedings/calf-and-heifer-development-and-onset-puberty-dairy-cows-divergent-genetic-merit [Last accessed on 28 Feb 2024].

27. Australian code for the care and use of animals for scientific purposes. Available from: https://www.nhmrc.gov.au/about-us/publications/australian-code-care-and-use-animals-scientific-purposes [Last accessed on 28 Feb 2024].

28. Percie du Sert N, Ahluwalia A, Alam S, et al. Reporting animal research: Explanation and elaboration for the ARRIVE guidelines 2.0. PLoS Biol 2020;18:e3000411.

29. Crookenden MA, Walker CG, Peiris H, et al. Short communication: Proteins from circulating exosomes represent metabolic state in transition dairy cows. J Dairy Sci 2016;99:7661-8.

30. Turner N, Abeysinghe P, Peiris H, et al. Proteomic profiling of plasma-derived small extracellular vesicles: a novel tool for understanding the systemic effects of tick burden in cattle. J Anim Sci 2022;100:skac015.

31. Fan Y, Siklenka K, Arora SK, Ribeiro P, Kimmins S, Xia J. miRNet - dissecting miRNA-target interactions and functional associations through network-based visual analysis. Nucleic Acids Res 2016;44:W135-41.

32. Agarwal V, Bell GW, Nam JW, Bartel DP. Predicting effective microRNA target sites in mammalian mRNAs. Elife 2015;4:e05005.

33. Dweep H, Gretz N, Sticht C. miRWalk database for miRNA-target interactions. In: Alvarez ML, Nourbakhsh M, editors. RNA Mapping. New York: Springer; 2014. pp. 289-305.

34. Herrnreiter CJ, Li X, Luck ME, Zilliox MJ, Choudhry MA. Integrated analysis of dysregulated microRNA and mRNA expression in intestinal epithelial cells following ethanol intoxication and burn injury. Sci Rep 2021;11:20213.

35. Li D, Knox B, Gong B, et al. Identification of translational microRNA biomarker candidates for ketoconazole-induced liver injury using next-generation sequencing. Toxicol Sci 2021;179:31-43.

36. Thomas PD, Ebert D, Muruganujan A, Mushayahama T, Albou LP, Mi H. PANTHER: Making genome-scale phylogenetics accessible to all. Protein Sci 2022;31:8-22.

37. Wickham H. ggplot2: Elegant graphics for data analysis. Springer New York, NY; 2016. pp. VIII, 213.

38. Wang L, Song X, Yu M, et al. Serum exosomal miR-377-3p and miR-381-3p as diagnostic biomarkers in colorectal cancer. Future Oncol 2022;18:793-805.

39. Shojaei S, Hashemi SM, Ghanbarian H, Sharifi K, Salehi M, Mohammadi-Yeganeh S. Delivery of miR-381-3p mimic by mesenchymal stem cell-derived exosomes inhibits triple negative breast cancer aggressiveness; an in vitro study. Stem Cell Rev Rep 2021;17:1027-38.

40. Liu Y, Guo Y, Bao S, Huang H, Liu W, Guo W. Bone marrow mesenchymal stem cell-derived exosomal microRNA-381-3p alleviates vascular calcification in chronic kidney disease by targeting NFAT5. Cell Death Dis 2022;13:278.

41. Bourgeois BL, Levitt DE, Molina PE, Simon L. Differential expression of adipocyte and myotube extracellular vesicle miRNA cargo in chronic binge alcohol-administered SIV-infected male macaques. Alcohol 2023;108:1-9.

42. Otahal A, Kuten-Pella O, Kramer K, et al. Functional repertoire of EV-associated miRNA profiles after lipoprotein depletion via ultracentrifugation and size exclusion chromatography from autologous blood products. Sci Rep 2021;11:5823.

43. Di K, Fan B, Gu X, et al. Highly efficient and automated isolation technology for extracellular vesicles microRNA. Front Bioeng Biotechnol 2022;10:948757.

44. Veerman RE, Teeuwen L, Czarnewski P, et al. Molecular evaluation of five different isolation methods for extracellular vesicles reveals different clinical applicability and subcellular origin. J Extracell Vesicles 2021;10:e12128.

45. Saludas L, Garbayo E, Ruiz-Villalba A, et al. Isolation methods of large and small extracellular vesicles derived from cardiovascular progenitors: A comparative study. Eur J Pharm Biopharm 2022;170:187-96.

46. Bai SY, Li ML, Ren Y, Su XM. HDAC8-inhibitor PCI-34051-induced exosomes inhibit human bronchial smooth muscle cell proliferation via miR-381-3p mediated TGFB3. Pulm Pharmacol Ther 2021;71:102096.

47. Sun L, Xu M, Zhang G, et al. Identification of circulating exosomal miR-101 and miR-125b panel act as a potential biomarker for hepatocellular carcinoma. Int J Genomics 2021;2021:1326463.

48. Zhou C, Chen Y, He X, Zheng Z, Xue D. Functional implication of exosomal miR-217 and miR-23b-3p in the progression of prostate cancer. Onco Targets Ther 2020;13:11595-606.

49. Qu P, Xie X, Chi J, et al. Circulating exosomal miR-144-3p from crohn's disease patients inhibits human umbilical vein endothelial cell function by targeting FN1. Dis Markers 2022;2022:8219557.

50. Chen P, Huang S, Yu Q, et al. Serum exosomal microRNA-144-3p: a promising biomarker for monitoring Crohn's disease. Gastroenterol Rep 2022;10:goab056.

51. Yan Z, Sheng Z, Zheng Y, et al. Cancer-associated fibroblast-derived exosomal miR-18b promotes breast cancer invasion and metastasis by regulating TCEAL7. Cell Death Dis 2021;12:1120.

52. Huang Q, Gong M, Tan T, Lin Y, Bao Y, Fan C. Human umbilical cord mesenchymal stem cells-derived exosomal microRNA-18b-3p inhibits the occurrence of preeclampsia by targeting LEP. Nanoscale Res Lett 2021;16:27.

53. Lu Z, Hou J, Li X, et al. Exosome-derived miRNAs as potential biomarkers for prostate bone metastasis. Int J Gen Med 2022;15:5369-83.

54. O'Brien K, Breyne K, Ughetto S, Laurent LC, Breakefield XO. RNA delivery by extracellular vesicles in mammalian cells and its applications. Nat Rev Mol Cell Biol 2020;21:585-606.

55. Mittelbrunn M, Gutiérrez-Vázquez C, Villarroya-Beltri C, et al. Unidirectional transfer of microRNA-loaded exosomes from T cells to antigen-presenting cells. Nat Commun 2011;2:282.

56. Zhang X, Xu Y, Ma L, et al. Essential roles of exosome and circRNA_101093 on ferroptosis desensitization in lung adenocarcinoma. Cancer Commun 2022;42:287-313.

57. Yang J, Zhang X, Chen X, Wang L, Yang G. Exosome Mediated Delivery of miR-124 Promotes Neurogenesis after Ischemia. Mol Ther Nucleic Acids 2017;7:278-87.

58. Kang L, Miao Y, Jin Y, Shen S, Lin X. Exosomal miR-205-5p derived from periodontal ligament stem cells attenuates the inflammation of chronic periodontitis via targeting XBP1. Immun Inflamm Dis 2023;11:e743.

59. Yang H, Jiang T, Fan L, Qiu X. lncRNA LINC00960 promotes apoptosis by sponging ubiquitin ligase Nrdp1-targeting miR-183-5p. Acta Biochim Biophys Sin 2023;55:91-102.

60. Tang MR, Wang YX, Guo S, Han SY, Li HH, Jin SF. Prognostic significance of in situ and plasma levels of transforming growth factor β1, -2 and -3 in cutaneous melanoma. Mol Med Rep 2015;11:4508-12.

61. Yue Y, Che D, Hsiao YW, Zhou J, Zhao K. Association between transforming growth factors-β and matrix metalloproteinases in the aqueous humor and plasma in myopic patients. J Fr Ophtalmol 2022;45:1177-83.

62. Karimi N, Cvjetkovic A, Jang SC, et al. Detailed analysis of the plasma extracellular vesicle proteome after separation from lipoproteins. Cell Mol Life Sci 2018;75:2873-86.

63. Johnsen KB, Gudbergsson JM, Andresen TL, Simonsen JB. What is the blood concentration of extracellular vesicles? Implications for the use of extracellular vesicles as blood-borne biomarkers of cancer. Biochim Biophys Acta Rev Cancer 2019;1871:109-16.

64. Vergauwen G, Tulkens J, Pinheiro C, et al. Robust sequential biophysical fractionation of blood plasma to study variations in the biomolecular landscape of systemically circulating extracellular vesicles across clinical conditions. J Extracell Vesicles 2021;10:e12122.

65. Karimi N, Dalirfardouei R, Dias T, Lötvall J, Lässer C. Tetraspanins distinguish separate extracellular vesicle subpopulations in human serum and plasma - contributions of platelet extracellular vesicles in plasma samples. J Extracell Vesicles 2022;11:e12213.

66. Mladenović D, Khamari D, Kittel Á, Koort K, Buzás EI, Zarovni N. Acidification of blood plasma facilitates the separation and analysis of extracellular vesicles. J Thromb Haemost 2023;21:1032-42.

67. Arroyo JD, Chevillet JR, Kroh EM, et al. Argonaute2 complexes carry a population of circulating microRNAs independent of vesicles in human plasma. Proc Natl Acad Sci U S A 2011;108:5003-8.

68. Abeysinghe AAPH. Replication data for sEV miRNA isolation method comparison. Available from: https://doi.org/10.7910/DVN/DNXWVG [Last accessed on 28 Feb 2024]

Extracellular Vesicles and Circulating Nucleic Acids
ISSN 2767-6641 (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/