REFERENCES

1. Wolf P. The nature and significance of platelet products in human plasma. Br J Haematol 1967;13:269-88.

2. Maas SLN, Breakefield XO, Weaver AM. Extracellular vesicles: unique intercellular delivery vehicles. Trends Cell Biol 2017;27:172-88.

3. Kang T, Atukorala I, Mathivanan S. Biogenesis of extracellular vesicles. Subcell Biochem 2021;97:19-43.

4. Théry C, Witwer KW, Aikawa E, et al. Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. J Extracell Vesicles 2018;7:1535750.

5. Makarova M, May RC. Fungal extracellular vesicles in interkingdom communication. Curr Top Microbiol Immunol 2021;432:81-8.

6. Yáñez-Mó M, Siljander PR, Andreu Z, et al. Biological properties of extracellular vesicles and their physiological functions. J Extracell Vesicles 2015;4:27066.

7. Chen Z, Larregina AT, Morelli AE. Impact of extracellular vesicles on innate immunity. Curr Opin Organ Transplant 2019;24:670-8.

8. Robbins PD, Morelli AE. Regulation of immune responses by extracellular vesicles. Nat Rev Immunol 2014;14:195-208.

9. Hiemstra TF, Charles PD, Gracia T, et al. Human urinary exosomes as innate immune effectors. J Am Soc Nephrol 2014;25:2017-27.

10. Kuipers ME, Hokke CH, Smits HH, Nolte-'t Hoen ENM. Pathogen-derived extracellular vesicle-associated molecules that affect the host immune system: an overview. Front Microbiol 2018;9:2182.

11. Schorey JS, Cheng Y, Singh PP, Smith VL. Exosomes and other extracellular vesicles in host-pathogen interactions. EMBO Rep 2015;16:24-43.

12. Zarnowski R, Sanchez H, Covelli AS, et al. Candida albicans biofilm-induced vesicles confer drug resistance through matrix biogenesis. PLoS Biol 2018;16:e2006872.

13. Yonezawa H, Osaki T, Kamiya S. Biofilm formation by Helicobacter pylori and its involvement for antibiotic resistance. Biomed Res Int 2015;2015:914791.

14. Seike S, Kobayashi H, Ueda M, Takahashi E, Okamoto K, Yamanaka H. Outer membrane vesicles released from aeromonas strains are involved in the biofilm formation. Front Microbiol 2020;11:613650.

15. Hai TP, Tuan TL, van Anh D, et al. The virulence of the Cryptococcus neoformans VNIa-5 lineage is highly plastic and associated with isolate background. bioRxiv 2020; doi: 10.1101/2020.02.24.962134.

16. Rumbo C, Fernández-Moreira E, Merino M, et al. Horizontal transfer of the OXA-24 carbapenemase gene via outer membrane vesicles: a new mechanism of dissemination of carbapenem resistance genes in Acinetobacter baumannii. Antimicrob Agents Chemother 2011;55:3084-90.

17. Yaron S, Kolling GL, Simon L, Matthews KR. Vesicle-mediated transfer of virulence genes from Escherichia coli O157:H7 to other enteric bacteria. Appl Environ Microbiol 2000;66:4414-20.

18. An Q, Ehlers K, Kogel KH, van Bel AJ, Hückelhoven R. Multivesicular compartments proliferate in susceptible and resistant MLA12-barley leaves in response to infection by the biotrophic powdery mildew fungus. New Phytol 2006;172:563-76.

19. An Q, Hückelhoven R, Kogel KH, van Bel AJ. Multivesicular bodies participate in a cell wall-associated defence response in barley leaves attacked by the pathogenic powdery mildew fungus. Cell Microbiol 2006;8:1009-19.

20. Bolwell PP, Page A, Piślewska M, Wojtaszek P. Pathogenic infection and the oxidative defences in plant apoplast. Protoplasma 2001;217:20-32.

21. Micali CO, Neumann U, Grunewald D, Panstruga R, O'Connell R. Biogenesis of a specialized plant-fungal interface during host cell internalization of Golovinomyces orontii haustoria. Cell Microbiol 2011;13:210-26.

22. Rutter BD, Innes RW. Extracellular vesicles isolated from the leaf apoplast carry stress-response proteins. Plant Physiol 2017;173:728-41.

23. Regente M, Pinedo M, San Clemente H, Balliau T, Jamet E, de la Canal L. Plant extracellular vesicles are incorporated by a fungal pathogen and inhibit its growth. J Exp Bot 2017;68:5485-95.

24. Koch A, Schlemmer T, Lischka R. Elucidating the role of extracellular vesicles in the Barley-Fusarium interaction. TEV 2020;2:28-35.

25. Zhou Q, Ma K, Hu H, Xing X, Huang X, Gao H. Extracellular vesicles: their functions in plant-pathogen interactions. Mol Plant Pathol 2022;23:760-71.

26. Fisher MC, Henk DA, Briggs CJ, et al. Emerging fungal threats to animal, plant and ecosystem health. Nature 2012;484:186-94.

27. Girbardt M. About the substructure of Polystictus versicolor L. Arch Mikrobiol 1958;28:255-69.

28. MOORE RT, McALEAR JH. Fine structure of mycota. Reconstruction from skipped serial sections of the nuclear envelope and its continuity with the plasma membrane. Exp Cell Res 1961;24:588-92.

29. Gibson RK, Peberdy JF. Fine structure of protoplasts of Aspergillus nidulans. J Gen Microbiol 1972;72:529-38.

30. Takeo K, Uesaka I, Uehira K, Nishiura M. Fine structure of Cryptococcus neoformans grown in vivo as observed by freeze-etching. J Bacteriol 1973;113:1449-54.

31. Anderson J, Mihalik R, Soll DR. Ultrastructure and antigenicity of the unique cell wall pimple of the Candida opaque phenotype. J Bacteriol 1990;172:224-35.

32. Chigaleichik AG, Belova LA, Grishchenko VM, Rylkin SS. Several properties of the extracellular vesicles of Candida tropicalis yeasts grown on n-alkanes. Mikrobiologiia 1977;46:467-71.

33. Osumi M. The ultrastructure of yeast: cell wall structure and formation. Micron 1998;29:207-33.

34. Eisenman HC, Frases S, Nicola AM, Rodrigues ML, Casadevall A. Vesicle-associated melanization in Cryptococcus neoformans. Microbiology (Reading) 2009;155:3860-7.

35. Rodrigues ML, Nakayasu ES, Oliveira DL, et al. Extracellular vesicles produced by Cryptococcus neoformans contain protein components associated with virulence. Eukaryot Cell 2008;7:58-67.

36. Rodrigues ML, Nimrichter L, Oliveira DL, et al. Vesicular polysaccharide export in Cryptococcus neoformans is a eukaryotic solution to the problem of fungal trans-cell wall transport. Eukaryot Cell 2007;6:48-59.

37. Albuquerque PC, Nakayasu ES, Rodrigues ML, et al. Vesicular transport in Histoplasma capsulatum: an effective mechanism for trans-cell wall transfer of proteins and lipids in ascomycetes. Cell Microbiol 2008;10:1695-710.

38. Baltazar LM, Zamith-Miranda D, Burnet MC, et al. Concentration-dependent protein loading of extracellular vesicles released by Histoplasma capsulatum after antibody treatment and its modulatory action upon macrophages. Sci Rep 2018;8:8065.

39. Vallejo MC, Nakayasu ES, Longo LV, et al. Lipidomic analysis of extracellular vesicles from the pathogenic phase of Paracoccidioides brasiliensis. PLoS One 2012;7:e39463.

40. Vargas G, Rocha JD, Oliveira DL, et al. Compositional and immunobiological analyses of extracellular vesicles released by Candida albicans. Cell Microbiol 2015;17:389-407.

41. Ikeda MAK, de Almeida JRF, Jannuzzi GP, et al. Extracellular vesicles from Sporothrix brasiliensis are an important virulence factor that induce an increase in fungal burden in experimental sporotrichosis. Front Microbiol 2018;9:2286.

42. Huang SH, Wu CH, Chang YC, Kwon-Chung KJ, Brown RJ, Jong A. Cryptococcus neoformans-derived microvesicles enhance the pathogenesis of fungal brain infection. PLoS One 2012;7:e48570.

43. Bielska E, Sisquella MA, Aldeieg M, Birch C, O'Donoghue EJ, May RC. Pathogen-derived extracellular vesicles mediate virulence in the fatal human pathogen Cryptococcus gattii. Nat Commun 2018;9:1556.

44. Silva TA, Roque-Barreira MC, Casadevall A, Almeida F. Extracellular vesicles from Paracoccidioides brasiliensis induced M1 polarization in vitro. Sci Rep 2016;6:35867.

45. Johansson HJ, Vallhov H, Holm T, et al. Author correction: extracellular nanovesicles released from the commensal yeast Malassezia sympodialis are enriched in allergens and interact with cells in human skin. Sci Rep 2019;9:15014.

46. Oliveira DL, Freire-de-Lima CG, Nosanchuk JD, Casadevall A, Rodrigues ML, Nimrichter L. Extracellular vesicles from Cryptococcus neoformans modulate macrophage functions. Infect Immun 2010;78:1601-9.

47. Lavrin T, Konte T, Kostanjšek R, et al. The Neurotropic Black yeast Exophiala dermatitidis induces neurocytotoxicity in neuroblastoma cells and progressive cell death. Cells 2020;9:963.

48. Leone F, Bellani L, Muccifora S, et al. Analysis of extracellular vesicles produced in the biofilm by the dimorphic yeast Pichia fermentans. J Cell Physiol 2018;233:2759-67.

49. Peres da Silva R, Puccia R, Rodrigues ML, et al. Extracellular vesicle-mediated export of fungal RNA. Sci Rep 2015;5:7763.

50. Gehrmann U, Qazi KR, Johansson C, et al. Nanovesicles from Malassezia sympodialis and host exosomes induce cytokine responses--novel mechanisms for host-microbe interactions in atopic eczema. PLoS One 2011;6:e21480.

51. Bitencourt TA, Rezende CP, Quaresemin NR, et al. Extracellular vesicles from the dermatophyte Trichophyton interdigitale modulate macrophage and keratinocyte functions. Front Immunol 2018;9:2343.

52. Bleackley MR, Samuel M, Garcia-Ceron D, et al. Extracellular vesicles from the cotton pathogen Fusarium oxysporum f. sp. vasinfectum induce a phytotoxic response in plants. Front Plant Sci 2019;10:1610.

53. Brauer VS, Pessoni AM, Bitencourt TA, et al. Extracellular vesicles from Aspergillus flavus induce M1 polarization in vitro. mSphere 2020:5.

54. de Paula RG, Antoniêto ACC, Nogueira KMV, et al. Extracellular vesicles carry cellulases in the industrial fungus Trichoderma reesei. Biotechnol Biofuels 2019;12:146.

55. Garcia-Ceron D, Lowe RGT, McKenna JA, et al. Extracellular vesicles from Fusarium graminearum contain protein effectors expressed during infection of corn. J Fungi (Basel) 2021;7:977.

56. Hill EH, Solomon PS. Extracellular vesicles from the apoplastic fungal wheat pathogen Zymoseptoria tritici. Fungal Biol Biotechnol 2020;7:13.

57. Kwon S, Rupp O, Brachmann A, et al. mRNA inventory of extracellular vesicles from Ustilago maydis. J Fungi (Basel) 2021;7:562.

58. Liu M, Bruni GO, Taylor CM, Zhang Z, Wang P. Comparative genome-wide analysis of extracellular small RNAs from the mucormycosis pathogen Rhizopus delemar. Sci Rep 2018;8:5243.

59. Rutter BD, Chu TT, Dallery JF, Zajt KK, O'Connell RJ, Innes RW. The development of extracellular vesicle markers for the fungal phytopathogen Colletotrichum higginsianum. J Extracell Vesicles 2022;11:e12216.

60. Silva BM, Prados-Rosales R, Espadas-Moreno J, et al. Characterization of Alternaria infectoria extracellular vesicles. Med Mycol 2014;52:202-10.

61. Souza JAM, Baltazar LM, Carregal VM, et al. Corrigendum: characterization of Aspergillus fumigatus extracellular vesicles and their effects on macrophages and neutrophils functions. Front Microbiol 2019;10:2334.

62. Garcia-Ceron D, Dawson CS, Faou P, Bleackley MR, Anderson MA. Size-exclusion chromatography allows the isolation of EVs from the filamentous fungal plant pathogen Fusarium oxysporum f. sp. vasinfectum (Fov). Proteomics 2021;21:e2000240.

63. Deun J, Mestdagh P, Agostinis P, et al. EV-TRACK Consortium. EV-TRACK: transparent reporting and centralizing knowledge in extracellular vesicle research. Nat Methods 2017;14:228-32.

64. Cleare LG, Zamith D, Heyman HM, et al. Media matters! Alterations in the loading and release of Histoplasma capsulatum extracellular vesicles in response to different nutritional milieus. Cell Microbiol 2020;22:e13217.

65. Li L, Liang T, Liu W, Liu Y, Ma F. A comprehensive review of the mycelial pellet: research status, applications, and future prospects. Ind Eng Chem Res 2020;59:16911-22.

66. Rizzo J, Chaze T, Miranda K, et al. Characterization of extracellular vesicles produced by Aspergillus fumigatus protoplasts. mSphere 2020:5.

67. Monguió-Tortajada M, Gálvez-Montón C, Bayes-Genis A, Roura S, Borràs FE. Extracellular vesicle isolation methods: rising impact of size-exclusion chromatography. Cell Mol Life Sci 2019;76:2369-82.

68. Takov K, Yellon DM, Davidson SM. Confounding factors in vesicle uptake studies using fluorescent lipophilic membrane dyes. J Extracell Vesicles 2017;6:1388731.

69. Piffer AC, Kuczera D, Rodrigues ML, Nimrichter L. The paradoxical and still obscure properties of fungal extracellular vesicles. Mol Immunol 2021;135:137-46.

70. Deventer SJ, Dunlock VE, van Spriel AB. Molecular interactions shaping the tetraspanin web. Biochem Soc Trans 2017;45:741-50.

71. Yoshioka Y, Konishi Y, Kosaka N, Katsuda T, Kato T, Ochiya T. Comparative marker analysis of extracellular vesicles in different human cancer types. J Extracell Vesicles 2013;2:20424.

72. Wollert T, Hurley JH. Molecular mechanism of multivesicular body biogenesis by ESCRT complexes. Nature 2010;464:864-9.

73. Lambou K, Tharreau D, Kohler A, et al. Fungi have three tetraspanin families with distinct functions. BMC Genomics 2008;9:63.

74. Dawson CS, Garcia-Ceron D, Rajapaksha H, Faou P, Bleackley MR, Anderson MA. Protein markers for Candida albicans EVs include claudin-like Sur7 family proteins. J Extracell Vesicles 2020;9:1750810.

75. Douglas LM, Konopka JB. Fungal membrane organization: the eisosome concept. Annu Rev Microbiol 2014;68:377-93.

76. Gupta GD, Brent Heath I. Predicting the distribution, conservation, and functions of SNAREs and related proteins in fungi. Fungal Genet Biol 2002;36:1-21.

77. Wang J, Tian L, Zhang DD, et al. SNARE-Encoding Genes VdSec22 and VdSso1 Mediate Protein Secretion Required for Full Virulence in Verticillium dahliae. Mol Plant Microbe Interact 2018;31:651-64.

78. Giraldo MC, Dagdas YF, Gupta YK, et al. Two distinct secretion systems facilitate tissue invasion by the rice blast fungus Magnaporthe oryzae. Nat Commun 2013;4:1996.

79. O'Mara SP, Broz K, Boenisch M, Zhong Z, Dong Y, Kistler HC. The Fusarium graminearum t-SNARE Sso2 Is Involved in Growth, Defense, and DON Accumulation and Virulence. Mol Plant Microbe Interact 2020;33:888-901.

80. Toledo Martins S, Szwarc P, Goldenberg S, Alves LR. Extracellular vesicles in fungi: composition and functions. Curr Top Microbiol Immunol 2019;422:45-59.

81. Bleackley MR, Dawson CS, Anderson MA. Fungal extracellular vesicles with a focus on proteomic analysis. Proteomics 2019;19:e1800232.

82. Studt L, Tudzynski B. Gibberellins and the red pigments bikaverin and fusarubin. In: Martín J, García-estrada C, Zeilinger S, editors. Biosynthesis and molecular genetics of fungal secondary metabolites. New York: Springer; 2014. p. 209-38.

83. Pusztahelyi T, Holb IJ, Pócsi I. Secondary metabolites in fungus-plant interactions. Front Plant Sci 2015;6:573.

84. Frandsen RJ, Rasmussen SA, Knudsen PB, et al. Black perithecial pigmentation in Fusarium species is due to the accumulation of 5-deoxybostrycoidin-based melanin. Sci Rep 2016;6:26206.

85. Limón MC, Rodríguez-Ortiz R, Avalos J. Bikaverin production and applications. Appl Microbiol Biotechnol 2010;87:21-9.

86. Zhao K, Bleackley M, Chisanga D, et al. Extracellular vesicles secreted by Saccharomyces cerevisiae are involved in cell wall remodelling. Commun Biol 2019;2:305.

87. Tariqjaveed M, Mateen A, Wang S, et al. Versatile effectors of phytopathogenic fungi target host immunity. J Integr Plant Biol 2021;63:1856-73.

88. Gijzen M, Nürnberger T. Nep1-like proteins from plant pathogens: recruitment and diversification of the NPP1 domain across taxa. Phytochemistry 2006;67:1800-7.

89. Guyon K, Balagué C, Roby D, Raffaele S. Secretome analysis reveals effector candidates associated with broad host range necrotrophy in the fungal plant pathogen Sclerotinia sclerotiorum. BMC Genomics 2014;15:336.

90. Muraosa Y, Toyotome T, Yahiro M, Kamei K. Characterisation of novel-cell-wall LysM-domain proteins LdpA and LdpB from the human pathogenic fungus Aspergillus fumigatus. Sci Rep 2019;9:3345.

91. Turchinovich A, Drapkina O, Tonevitsky A. Transcriptome of extracellular vesicles: state-of-the-art. Front Immunol 2019;10:202.

92. Hoen EN, Buermans HP, Waasdorp W, Stoorvogel A, Wauben MH, 't Hoen PA. Deep sequencing of RNA from immune cell-derived vesicles uncovers the selective incorporation of small non-coding RNA biotypes with potential regulatory functions. Nucleic Acids Res 2012;40:9272-85.

93. Zhang Q, Higginbotham JN, Jeppesen DK, et al. Transfer of functional cargo in exomeres. Cell Rep 2019;27:940-954.e6.

94. Zhang Q, Jeppesen DK, Higginbotham JN, et al. Supermeres are functional extracellular nanoparticles replete with disease biomarkers and therapeutic targets. Nat Cell Biol 2021;23:1240-54.

95. Kim KM, Abdelmohsen K, Mustapic M, Kapogiannis D, Gorospe M. RNA in extracellular vesicles. Wiley Interdiscip Rev RNA 2017;8:e1413.

96. Bitencourt TA, Pessoni AM, Oliveira BTM, Alves LR, Almeida F. The RNA content of fungal extracellular vesicles: at the “cutting-edge” of pathophysiology regulation. Cells 2022;11:2184.

97. Lee HC, Li L, Gu W, et al. Diverse pathways generate microRNA-like RNAs and Dicer-independent small interfering RNAs in fungi. Mol Cell 2010;38:803-14.

98. Yang Q, Li L, Xue Z, et al. Transcription of the major Neurospora crassa microRNA-like small RNAs relies on RNA polymerase III. PLoS Genet 2013;9:e1003227.

99. Zhou J, Fu Y, Xie J, et al. Identification of microRNA-like RNAs in a plant pathogenic fungus Sclerotinia sclerotiorum by high-throughput sequencing. Mol Genet Genomics 2012;287:275-82.

100. Yang F. Genome-wide analysis of small RNAs in the wheat pathogenic fungus Zymoseptoria tritici. Fungal Biol 2015;119:631-40.

101. Mueth NA, Ramachandran SR, Hulbert SH. Small RNAs from the wheat stripe rust fungus (Puccinia striiformis f.sp. tritici ). BMC Genomics 2015;16:718.

102. Jin Y, Zhao JH, Zhao P, Zhang T, Wang S, Guo HS. A fungal milRNA mediates epigenetic repression of a virulence gene in Verticillium dahliae. Philos Trans R Soc Lond B Biol Sci 2019;374:20180309.

103. Chen R, Jiang N, Jiang Q, et al. Exploring microRNA-like small RNAs in the filamentous fungus Fusarium oxysporum. PLoS One 2014;9:e104956.

104. Ji HM, Mao HY, Li SJ, et al. Fol-milR1, a pathogenicity factor of Fusarium oxysporum, confers tomato wilt disease resistance by impairing host immune responses. New Phytol 2021;232:705-18.

105. Kusch S, Singh M, Thieron H, Spanu PD, Panstruga R. Site-specific analysis reveals candidate cross-kingdom small RNAs, tRNA and rRNA fragments, and signs of fungal RNA phasing in the barley-powdery mildew interaction. Mol Plant Pathol 2023; doi: 10.1111/mpp.13324.

106. Škalamera D, Heath MC. Cellular mechanisms of callose deposition in response to fungal infection or chemical damage. Can J Plant Sci 1996;74:6.

107. Panepinto J, Komperda K, Frases S, et al. Sec6-dependent sorting of fungal extracellular exosomes and laccase of Cryptococcus neoformans. Mol Microbiol 2009;71:1165-76.

108. Oliveira DL, Nakayasu ES, Joffe LS, et al. Characterization of yeast extracellular vesicles: evidence for the participation of different pathways of cellular traffic in vesicle biogenesis. PLoS One 2010;5:e11113.

109. Reis FCG, Borges BS, Jozefowicz LJ, et al. A novel protocol for the isolation of fungal extracellular vesicles reveals the participation of a putative scramblase in polysaccharide export and capsule construction in Cryptococcus gattii. mSphere 2019:4.

110. Rizzo J, Oliveira DL, Joffe LS, et al. Role of the Apt1 protein in polysaccharide secretion by Cryptococcus neoformans. Eukaryot Cell 2014;13:715-26.

111. Wang J, Holden DW, Leong SA. Gene transfer system for the phytopathogenic fungus Ustilago maydis. Proc Natl Acad Sci USA 1988;85:865-9.

112. Twaruschek K, Spörhase P, Michlmayr H, Wiesenberger G, Adam G. New plasmids for fusarium transformation allowing positive-negative selection and efficient cre-loxp mediated marker recycling. Front Microbiol 2018;9:1954.

113. Joshi SG, Kumar V, Janga MR, Bell AA, Rathore KS. Response of AtNPR1-expressing cotton plants to Fusarium oxysporum f. sp. vasinfectum isolates. Physiol Mol Biol Plants 2017;23:135-42.

114. Huser A, Takahara H, Schmalenbach W, O'Connell R. Discovery of pathogenicity genes in the crucifer anthracnose fungus Colletotrichum higginsianum, using random insertional mutagenesis. Mol Plant Microbe Interact 2009;22:143-56.

115. Bowler J, Scott E, Tailor R, Scalliet G, Ray J, Csukai M. New capabilities for Mycosphaerella graminicola research. Mol Plant Pathol 2010;11:691-704.

116. Shoji JY, Kikuma T, Kitamoto K. Vesicle trafficking, organelle functions, and unconventional secretion in fungal physiology and pathogenicity. Curr Opin Microbiol 2014;20:1-9.

Extracellular Vesicles and Circulating Nucleic Acids
ISSN 2767-6641 (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/