REFERENCES
1. Wolf P. The nature and significance of platelet products in human plasma. Br J Haematol 1967;13:269-88.
2. Maas SLN, Breakefield XO, Weaver AM. Extracellular vesicles: unique intercellular delivery vehicles. Trends Cell Biol 2017;27:172-88.
3. Kang T, Atukorala I, Mathivanan S. Biogenesis of extracellular vesicles. Subcell Biochem 2021;97:19-43.
4. Théry C, Witwer KW, Aikawa E, et al. Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. J Extracell Vesicles 2018;7:1535750.
5. Makarova M, May RC. Fungal extracellular vesicles in interkingdom communication. Curr Top Microbiol Immunol 2021;432:81-8.
6. Yáñez-Mó M, Siljander PR, Andreu Z, et al. Biological properties of extracellular vesicles and their physiological functions. J Extracell Vesicles 2015;4:27066.
7. Chen Z, Larregina AT, Morelli AE. Impact of extracellular vesicles on innate immunity. Curr Opin Organ Transplant 2019;24:670-8.
8. Robbins PD, Morelli AE. Regulation of immune responses by extracellular vesicles. Nat Rev Immunol 2014;14:195-208.
9. Hiemstra TF, Charles PD, Gracia T, et al. Human urinary exosomes as innate immune effectors. J Am Soc Nephrol 2014;25:2017-27.
10. Kuipers ME, Hokke CH, Smits HH, Nolte-'t Hoen ENM. Pathogen-derived extracellular vesicle-associated molecules that affect the host immune system: an overview. Front Microbiol 2018;9:2182.
11. Schorey JS, Cheng Y, Singh PP, Smith VL. Exosomes and other extracellular vesicles in host-pathogen interactions. EMBO Rep 2015;16:24-43.
12. Zarnowski R, Sanchez H, Covelli AS, et al.
13. Yonezawa H, Osaki T, Kamiya S. Biofilm formation by
14. Seike S, Kobayashi H, Ueda M, Takahashi E, Okamoto K, Yamanaka H. Outer membrane vesicles released from aeromonas strains are involved in the biofilm formation. Front Microbiol 2020;11:613650.
15. Hai TP, Tuan TL, van Anh D, et al. The virulence of the
16. Rumbo C, Fernández-Moreira E, Merino M, et al. Horizontal transfer of the OXA-24 carbapenemase gene via outer membrane vesicles: a new mechanism of dissemination of carbapenem resistance genes in
17. Yaron S, Kolling GL, Simon L, Matthews KR. Vesicle-mediated transfer of virulence genes from
18. An Q, Ehlers K, Kogel KH, van Bel AJ, Hückelhoven R. Multivesicular compartments proliferate in susceptible and resistant MLA12-barley leaves in response to infection by the biotrophic powdery mildew fungus. New Phytol 2006;172:563-76.
19. An Q, Hückelhoven R, Kogel KH, van Bel AJ. Multivesicular bodies participate in a cell wall-associated defence response in barley leaves attacked by the pathogenic powdery mildew fungus. Cell Microbiol 2006;8:1009-19.
20. Bolwell PP, Page A, Piślewska M, Wojtaszek P. Pathogenic infection and the oxidative defences in plant apoplast. Protoplasma 2001;217:20-32.
21. Micali CO, Neumann U, Grunewald D, Panstruga R, O'Connell R. Biogenesis of a specialized plant-fungal interface during host cell internalization of
22. Rutter BD, Innes RW. Extracellular vesicles isolated from the leaf apoplast carry stress-response proteins. Plant Physiol 2017;173:728-41.
23. Regente M, Pinedo M, San Clemente H, Balliau T, Jamet E, de la Canal L. Plant extracellular vesicles are incorporated by a fungal pathogen and inhibit its growth. J Exp Bot 2017;68:5485-95.
24. Koch A, Schlemmer T, Lischka R. Elucidating the role of extracellular vesicles in the Barley-Fusarium interaction. TEV 2020;2:28-35.
25. Zhou Q, Ma K, Hu H, Xing X, Huang X, Gao H. Extracellular vesicles: their functions in plant-pathogen interactions. Mol Plant Pathol 2022;23:760-71.
26. Fisher MC, Henk DA, Briggs CJ, et al. Emerging fungal threats to animal, plant and ecosystem health. Nature 2012;484:186-94.
28. MOORE RT, McALEAR JH. Fine structure of mycota. Reconstruction from skipped serial sections of the nuclear envelope and its continuity with the plasma membrane. Exp Cell Res 1961;24:588-92.
29. Gibson RK, Peberdy JF. Fine structure of protoplasts of
30. Takeo K, Uesaka I, Uehira K, Nishiura M. Fine structure of
31. Anderson J, Mihalik R, Soll DR. Ultrastructure and antigenicity of the unique cell wall pimple of the Candida opaque phenotype. J Bacteriol 1990;172:224-35.
32. Chigaleichik AG, Belova LA, Grishchenko VM, Rylkin SS. Several properties of the extracellular vesicles of
34. Eisenman HC, Frases S, Nicola AM, Rodrigues ML, Casadevall A. Vesicle-associated melanization in
35. Rodrigues ML, Nakayasu ES, Oliveira DL, et al. Extracellular vesicles produced by
36. Rodrigues ML, Nimrichter L, Oliveira DL, et al. Vesicular polysaccharide export in
37. Albuquerque PC, Nakayasu ES, Rodrigues ML, et al. Vesicular transport in
38. Baltazar LM, Zamith-Miranda D, Burnet MC, et al. Concentration-dependent protein loading of extracellular vesicles released by
39. Vallejo MC, Nakayasu ES, Longo LV, et al. Lipidomic analysis of extracellular vesicles from the pathogenic phase of
40. Vargas G, Rocha JD, Oliveira DL, et al. Compositional and immunobiological analyses of extracellular vesicles released by
41. Ikeda MAK, de Almeida JRF, Jannuzzi GP, et al. Extracellular vesicles from
42. Huang SH, Wu CH, Chang YC, Kwon-Chung KJ, Brown RJ, Jong A.
43. Bielska E, Sisquella MA, Aldeieg M, Birch C, O'Donoghue EJ, May RC. Pathogen-derived extracellular vesicles mediate virulence in the fatal human pathogen
44. Silva TA, Roque-Barreira MC, Casadevall A, Almeida F. Extracellular vesicles from
45. Johansson HJ, Vallhov H, Holm T, et al. Author correction: extracellular nanovesicles released from the commensal yeast
46. Oliveira DL, Freire-de-Lima CG, Nosanchuk JD, Casadevall A, Rodrigues ML, Nimrichter L. Extracellular vesicles from
47. Lavrin T, Konte T, Kostanjšek R, et al. The Neurotropic Black yeast
48. Leone F, Bellani L, Muccifora S, et al. Analysis of extracellular vesicles produced in the biofilm by the dimorphic yeast
49. Peres da Silva R, Puccia R, Rodrigues ML, et al. Extracellular vesicle-mediated export of fungal RNA. Sci Rep 2015;5:7763.
50. Gehrmann U, Qazi KR, Johansson C, et al. Nanovesicles from
51. Bitencourt TA, Rezende CP, Quaresemin NR, et al. Extracellular vesicles from the dermatophyte
52. Bleackley MR, Samuel M, Garcia-Ceron D, et al. Extracellular vesicles from the cotton pathogen
53. Brauer VS, Pessoni AM, Bitencourt TA, et al. Extracellular vesicles from
54. de Paula RG, Antoniêto ACC, Nogueira KMV, et al. Extracellular vesicles carry cellulases in the industrial fungus
55. Garcia-Ceron D, Lowe RGT, McKenna JA, et al. Extracellular vesicles from
56. Hill EH, Solomon PS. Extracellular vesicles from the apoplastic fungal wheat pathogen
57. Kwon S, Rupp O, Brachmann A, et al. mRNA inventory of extracellular vesicles from
58. Liu M, Bruni GO, Taylor CM, Zhang Z, Wang P. Comparative genome-wide analysis of extracellular small RNAs from the mucormycosis pathogen
59. Rutter BD, Chu TT, Dallery JF, Zajt KK, O'Connell RJ, Innes RW. The development of extracellular vesicle markers for the fungal phytopathogen
60. Silva BM, Prados-Rosales R, Espadas-Moreno J, et al. Characterization of
61. Souza JAM, Baltazar LM, Carregal VM, et al. Corrigendum: characterization of
62. Garcia-Ceron D, Dawson CS, Faou P, Bleackley MR, Anderson MA. Size-exclusion chromatography allows the isolation of EVs from the filamentous fungal plant pathogen
63. Deun J, Mestdagh P, Agostinis P, et al. EV-TRACK Consortium. EV-TRACK: transparent reporting and centralizing knowledge in extracellular vesicle research. Nat Methods 2017;14:228-32.
64. Cleare LG, Zamith D, Heyman HM, et al. Media matters! Alterations in the loading and release of
65. Li L, Liang T, Liu W, Liu Y, Ma F. A comprehensive review of the mycelial pellet: research status, applications, and future prospects. Ind Eng Chem Res 2020;59:16911-22.
66. Rizzo J, Chaze T, Miranda K, et al. Characterization of extracellular vesicles produced by
67. Monguió-Tortajada M, Gálvez-Montón C, Bayes-Genis A, Roura S, Borràs FE. Extracellular vesicle isolation methods: rising impact of size-exclusion chromatography. Cell Mol Life Sci 2019;76:2369-82.
68. Takov K, Yellon DM, Davidson SM. Confounding factors in vesicle uptake studies using fluorescent lipophilic membrane dyes. J Extracell Vesicles 2017;6:1388731.
69. Piffer AC, Kuczera D, Rodrigues ML, Nimrichter L. The paradoxical and still obscure properties of fungal extracellular vesicles. Mol Immunol 2021;135:137-46.
70. Deventer SJ, Dunlock VE, van Spriel AB. Molecular interactions shaping the tetraspanin web. Biochem Soc Trans 2017;45:741-50.
71. Yoshioka Y, Konishi Y, Kosaka N, Katsuda T, Kato T, Ochiya T. Comparative marker analysis of extracellular vesicles in different human cancer types. J Extracell Vesicles 2013;2:20424.
72. Wollert T, Hurley JH. Molecular mechanism of multivesicular body biogenesis by ESCRT complexes. Nature 2010;464:864-9.
73. Lambou K, Tharreau D, Kohler A, et al. Fungi have three tetraspanin families with distinct functions. BMC Genomics 2008;9:63.
74. Dawson CS, Garcia-Ceron D, Rajapaksha H, Faou P, Bleackley MR, Anderson MA. Protein markers for
75. Douglas LM, Konopka JB. Fungal membrane organization: the eisosome concept. Annu Rev Microbiol 2014;68:377-93.
76. Gupta GD, Brent Heath I. Predicting the distribution, conservation, and functions of SNAREs and related proteins in fungi. Fungal Genet Biol 2002;36:1-21.
77. Wang J, Tian L, Zhang DD, et al. SNARE-Encoding Genes VdSec22 and VdSso1 Mediate Protein Secretion Required for Full Virulence in
78. Giraldo MC, Dagdas YF, Gupta YK, et al. Two distinct secretion systems facilitate tissue invasion by the rice blast fungus
79. O'Mara SP, Broz K, Boenisch M, Zhong Z, Dong Y, Kistler HC. The
80. Toledo Martins S, Szwarc P, Goldenberg S, Alves LR. Extracellular vesicles in fungi: composition and functions. Curr Top Microbiol Immunol 2019;422:45-59.
81. Bleackley MR, Dawson CS, Anderson MA. Fungal extracellular vesicles with a focus on proteomic analysis. Proteomics 2019;19:e1800232.
82. Studt L, Tudzynski B. Gibberellins and the red pigments bikaverin and fusarubin. In: Martín J, García-estrada C, Zeilinger S, editors. Biosynthesis and molecular genetics of fungal secondary metabolites. New York: Springer; 2014. p. 209-38.
83. Pusztahelyi T, Holb IJ, Pócsi I. Secondary metabolites in fungus-plant interactions. Front Plant Sci 2015;6:573.
84. Frandsen RJ, Rasmussen SA, Knudsen PB, et al. Black perithecial pigmentation in Fusarium species is due to the accumulation of 5-deoxybostrycoidin-based melanin. Sci Rep 2016;6:26206.
85. Limón MC, Rodríguez-Ortiz R, Avalos J. Bikaverin production and applications. Appl Microbiol Biotechnol 2010;87:21-9.
86. Zhao K, Bleackley M, Chisanga D, et al. Extracellular vesicles secreted by
87. Tariqjaveed M, Mateen A, Wang S, et al. Versatile effectors of phytopathogenic fungi target host immunity. J Integr Plant Biol 2021;63:1856-73.
88. Gijzen M, Nürnberger T. Nep1-like proteins from plant pathogens: recruitment and diversification of the NPP1 domain across taxa. Phytochemistry 2006;67:1800-7.
89. Guyon K, Balagué C, Roby D, Raffaele S. Secretome analysis reveals effector candidates associated with broad host range necrotrophy in the fungal plant pathogen
90. Muraosa Y, Toyotome T, Yahiro M, Kamei K. Characterisation of novel-cell-wall LysM-domain proteins LdpA and LdpB from the human pathogenic fungus
91. Turchinovich A, Drapkina O, Tonevitsky A. Transcriptome of extracellular vesicles: state-of-the-art. Front Immunol 2019;10:202.
92. Hoen EN, Buermans HP, Waasdorp W, Stoorvogel A, Wauben MH, 't Hoen PA. Deep sequencing of RNA from immune cell-derived vesicles uncovers the selective incorporation of small non-coding RNA biotypes with potential regulatory functions. Nucleic Acids Res 2012;40:9272-85.
93. Zhang Q, Higginbotham JN, Jeppesen DK, et al. Transfer of functional cargo in exomeres. Cell Rep 2019;27:940-954.e6.
94. Zhang Q, Jeppesen DK, Higginbotham JN, et al. Supermeres are functional extracellular nanoparticles replete with disease biomarkers and therapeutic targets. Nat Cell Biol 2021;23:1240-54.
95. Kim KM, Abdelmohsen K, Mustapic M, Kapogiannis D, Gorospe M. RNA in extracellular vesicles. Wiley Interdiscip Rev RNA 2017;8:e1413.
96. Bitencourt TA, Pessoni AM, Oliveira BTM, Alves LR, Almeida F. The RNA content of fungal extracellular vesicles: at the “cutting-edge” of pathophysiology regulation. Cells 2022;11:2184.
97. Lee HC, Li L, Gu W, et al. Diverse pathways generate microRNA-like RNAs and Dicer-independent small interfering RNAs in fungi. Mol Cell 2010;38:803-14.
98. Yang Q, Li L, Xue Z, et al. Transcription of the major
99. Zhou J, Fu Y, Xie J, et al. Identification of microRNA-like RNAs in a plant pathogenic fungus
100. Yang F. Genome-wide analysis of small RNAs in the wheat pathogenic fungus
101. Mueth NA, Ramachandran SR, Hulbert SH. Small RNAs from the wheat stripe rust fungus (
102. Jin Y, Zhao JH, Zhao P, Zhang T, Wang S, Guo HS. A fungal milRNA mediates epigenetic repression of a virulence gene in
103. Chen R, Jiang N, Jiang Q, et al. Exploring microRNA-like small RNAs in the filamentous fungus
104. Ji HM, Mao HY, Li SJ, et al. Fol-milR1, a pathogenicity factor of
105. Kusch S, Singh M, Thieron H, Spanu PD, Panstruga R. Site-specific analysis reveals candidate cross-kingdom small RNAs, tRNA and rRNA fragments, and signs of fungal RNA phasing in the barley-powdery mildew interaction. Mol Plant Pathol 2023; doi: 10.1111/mpp.13324.
106. Škalamera D, Heath MC. Cellular mechanisms of callose deposition in response to fungal infection or chemical damage. Can J Plant Sci 1996;74:6.
107. Panepinto J, Komperda K, Frases S, et al. Sec6-dependent sorting of fungal extracellular exosomes and laccase of
108. Oliveira DL, Nakayasu ES, Joffe LS, et al. Characterization of yeast extracellular vesicles: evidence for the participation of different pathways of cellular traffic in vesicle biogenesis. PLoS One 2010;5:e11113.
109. Reis FCG, Borges BS, Jozefowicz LJ, et al. A novel protocol for the isolation of fungal extracellular vesicles reveals the participation of a putative scramblase in polysaccharide export and capsule construction in
110. Rizzo J, Oliveira DL, Joffe LS, et al. Role of the Apt1 protein in polysaccharide secretion by
111. Wang J, Holden DW, Leong SA. Gene transfer system for the phytopathogenic fungus
112. Twaruschek K, Spörhase P, Michlmayr H, Wiesenberger G, Adam G. New plasmids for fusarium transformation allowing positive-negative selection and efficient cre-loxp mediated marker recycling. Front Microbiol 2018;9:1954.
113. Joshi SG, Kumar V, Janga MR, Bell AA, Rathore KS. Response of AtNPR1-expressing cotton plants to
114. Huser A, Takahara H, Schmalenbach W, O'Connell R. Discovery of pathogenicity genes in the crucifer anthracnose fungus
115. Bowler J, Scott E, Tailor R, Scalliet G, Ray J, Csukai M. New capabilities for