REFERENCES

1. Lo YM, Corbetta N, Chamberlain PF, et al. Presence of fetal DNA in maternal plasma and serum. Lancet 1997;350:485-7.

2. Alberry M, Maddocks D, Jones M, et al. Free fetal DNA in maternal plasma in anembryonic pregnancies: confirmation that the origin is the trophoblast. Prenat Diagn 2007;27:415-8.

3. Flori E, Doray B, Gautier E, et al. Circulating cell-free fetal DNA in maternal serum appears to originate from cyto- and syncytio-trophoblastic cells. Case report. Hum Reprod 2004;19:723-4.

4. Lo YM, Chan KC, Sun H, et al. Maternal plasma DNA sequencing reveals the genome-wide genetic and mutational profile of the fetus. Sci Transl Med 2010;2:61ra91.

5. Lo YM, Tein MS, Lau TK, et al. Quantitative analysis of fetal DNA in maternal plasma and serum: implications for noninvasive prenatal diagnosis. Am J Hum Genet 1998;62:768-75.

6. Lo YM, Zhang J, Leung TN, Lau TK, Chang AM, Hjelm NM. Rapid clearance of fetal DNA from maternal plasma. Am J Hum Genet 1999;64:218-24.

7. Wulff CB, Gerds TA, Rode L, Ekelund CK, Petersen OB, Tabor A. Danish Fetal Medicine Study Group. Risk of fetal loss associated with invasive testing following combined first-trimester screening for Down syndrome: a national cohort of 147,987 singleton pregnancies. Ultrasound Obstet Gynecol 2016;47:38-44.

8. Salomon LJ, Alfirevic Z, Audibert F, et al. ISUOG Clinical Standards Committee. ISUOG updated consensus statement on the impact of cfDNA aneuploidy testing on screening policies and prenatal ultrasound practice. Ultrasound Obstet Gynecol 2017;49:815-6.

9. Hill M, Compton C, Karunaratna M, Lewis C, Chitty L. Client views and attitudes to non-invasive prenatal diagnosis for sickle cell disease, thalassaemia and cystic fibrosis. J Genet Couns 2014;23:1012-21.

10. Lewis C, Hill M, Chitty LS. Non-invasive prenatal diagnosis for single gene disorders: experience of patients. Clin Genet 2014;85:336-42.

11. Deng C, Liu S. Factors Affecting the fetal fraction in noninvasive prenatal screening: a review. Front Pediatr 2022;10:812781.

12. Pergament E, Cuckle H, Zimmermann B, et al. Single-nucleotide polymorphism-based noninvasive prenatal screening in a high-risk and low-risk cohort. Obstet Gynecol 2014;124:210-8.

13. Canick JA, Palomaki GE, Kloza EM, Lambert-Messerlian GM, Haddow JE. The impact of maternal plasma DNA fetal fraction on next generation sequencing tests for common fetal aneuploidies. Prenat Diagn 2013;33:667-74.

14. Jiang P, Chan KC, Liao GJ, et al. FetalQuant: deducing fractional fetal DNA concentration from massively parallel sequencing of DNA in maternal plasma. Bioinformatics 2012;28:2883-90.

15. Yu SCY, Jiang P, Peng W, et al. Single-molecule sequencing reveals a large population of long cell-free DNA molecules in maternal plasma. Proc Natl Acad Sci USA 2021:118.

16. Lo YM, Lun FM, Chan KC, et al. Digital PCR for the molecular detection of fetal chromosomal aneuploidy. Proc Natl Acad Sci USA 2007;104:13116-21.

17. Lo YM, Chiu RW. Noninvasive prenatal diagnosis of fetal chromosomal aneuploidies by maternal plasma nucleic acid analysis. Clin Chem 2008;54:461-6.

18. Ravitsky V, Roy MC, Haidar H, et al. The emergence and global spread of noninvasive prenatal testing. Annu Rev Genomics Hum Genet 2021;22:309-38.

19. Wilkins-Haug L, Zhang C, Cerveira E, et al. Biological explanations for discordant noninvasive prenatal test results: preliminary data and lessons learned. Prenat Diagn 2018;38:445-58.

20. Hartwig TS, Ambye L, Sørensen S, Jørgensen FS. Discordant non-invasive prenatal testing (NIPT) - a systematic review. Prenat Diagn 2017;37:527-39.

21. Winerdal M, Westenius E, Granfors M, Pettersson M, Iwarsson E. Confined placental mosaicism of Duchenne muscular dystrophy: a case report. Mol Cytogenet 2020;13:51.

22. Hill M, Finning K, Martin P, et al. Non-invasive prenatal determination of fetal sex: translating research into clinical practice. Clin Genet 2011;80:68-75.

23. Devaney SA, Palomaki GE, Scott JA, Bianchi DW. Noninvasive fetal sex determination using cell-free fetal DNA: a systematic review and meta-analysis. JAMA 2011;306:627-36.

24. der Schoot CE, Thurik FF, Veldhuisen B, de Haas M. Noninvasive prenatal blood group and HPA-1a genotyping: the current European experience. Transfusion 2013;53:2834-6.

25. Clausen FB, Rieneck K, Krog GR, Bundgaard BS, Dziegiel MH. Noninvasive Antenatal screening for fetal RHD in RhD negative women to guide targeted anti-D prophylaxis. In: Levy B, editor. Prenatal diagnosis. New York: Springer; 2019. p. 347-59.

26. Legler TJ, Lührig S, Korschineck I, Schwartz D. Diagnostic performance of the noninvasive prenatal FetoGnost RhD assay for the prediction of the fetal RhD blood group status. Arch Gynecol Obstet 2021;304:1191-6.

27. Rieneck K, Egeberg Hother C, Clausen FB, et al. Next generation sequencing-based fetal abo blood group prediction by analysis of cell-free DNA from maternal plasma. Transfus Med Hemother 2020;47:45-53.

28. Saito H, Sekizawa A, Morimoto T, Suzuki M, Yanaihara T. Prenatal DNA diagnosis of a single-gene disorder from maternal plasma. Lancet 2000;356:1170.

29. Amicucci P, Gennarelli M, Novelli G, Dallapiccola B. Prenatal diagnosis of myotonic dystrophy using fetal DNA obtained from maternal plasma. Clinical Chemistry 2000;46:301-2.

30. Chitty LS, Griffin DR, Meaney C, et al. New aids for the non-invasive prenatal diagnosis of achondroplasia: dysmorphic features, charts of fetal size and molecular confirmation using cell-free fetal DNA in maternal plasma. Ultrasound Obstet Gynecol 2011;37:283-9.

31. Chitty LS, Khalil A, Barrett AN, Pajkrt E, Griffin DR, Cole TJ. Safe, accurate, prenatal diagnosis of thanatophoric dysplasia using ultrasound and free fetal DNA. Prenat Diagn 2013;33:416-23.

32. Chitty LS, Mason S, Barrett AN, et al. Non-invasive prenatal diagnosis of achondroplasia and thanatophoric dysplasia: next-generation sequencing allows for a safer, more accurate, and comprehensive approach. Prenat Diagn 2015;35:656-62.

33. Mellis R, Chandler N, Jenkins L, Chitty LS. The role of sonographic phenotyping in delivering an efficient noninvasive prenatal diagnosis service for FGFR3-related skeletal dysplasias. Prenat Diagn 2020;40:785-91.

34. Parks M, Court S, Cleary S, et al. Non-invasive prenatal diagnosis of Duchenne and Becker muscular dystrophies by relative haplotype dosage. Prenat Diagn 2016;36:312-20.

35. Young E, Bowns B, Gerrish A, et al. Clinical service delivery of noninvasive prenatal diagnosis by relative haplotype dosage for single-gene disorders. J Mol Diagn 2020;22:1151-61.

36. Chandler NJ, Ahlfors H, Drury S, et al. Noninvasive prenatal diagnosis for cystic fibrosis: implementation, uptake, outcome, and implications. Clin Chem 2020;66:207-16.

37. Parks M, Court S, Bowns B, et al. Non-invasive prenatal diagnosis of spinal muscular atrophy by relative haplotype dosage. Eur J Hum Genet 2017;25:416-22.

38. Tsao DS, Silas S, Landry BP, et al. A novel high-throughput molecular counting method with single base-pair resolution enables accurate single-gene NIPT. Sci Rep 2019;9:14382.

39. Zhang J, Li J, Saucier JB, et al. Non-invasive prenatal sequencing for multiple Mendelian monogenic disorders using circulating cell-free fetal DNA. Nat Med 2019;25:439-47.

40. Hill M, Lewis C, Jenkins L, Allen S, Elles RG, Chitty LS. Implementing noninvasive prenatal fetal sex determination using cell-free fetal DNA in the United Kingdom. Expert Opin Biol Ther 2012;12 Suppl 1:S119-26.

41. Hill M, Twiss P, Verhoef TI, et al. Non-invasive prenatal diagnosis for cystic fibrosis: detection of paternal mutations, exploration of patient preferences and cost analysis. Prenat Diagn 2015;35:950-8.

42. Pacault M, Verebi C, Lopez M, et al. Non-invasive prenatal diagnosis of single gene disorders by paternal mutation exclusion: 3 years of clinical experience. BJOG 2022;129:1879-86.

43. Tardy-Guidollet V, Menassa R, Costa JM, et al. New management strategy of pregnancies at risk of congenital adrenal hyperplasia using fetal sex determination in maternal serum: French cohort of 258 cases (2002-2011). J Clin Endocrinol Metab 2014;99:1180-8.

44. New MI, Tong YK, Yuen T, et al. Noninvasive prenatal diagnosis of congenital adrenal hyperplasia using cell-free fetal DNA in maternal plasma. J Clin Endocrinol Metab 2014;99:E1022-30.

45. D’Aversa E, Breveglieri G, Pellegatti P, Guerra G, Gambari R, Borgatti M. Non-invasive fetal sex diagnosis in plasma of early weeks pregnants using droplet digital PCR. Mol Med 2018;24:14.

46. Galbiati S, Brisci A, Lalatta F, et al. Full COLD-PCR protocol for noninvasive prenatal diagnosis of genetic diseases. Clin Chem 2011;57:136-8.

47. Galbiati S, Monguzzi A, Damin F, et al. COLD-PCR and microarray: two independent highly sensitive approaches allowing the identification of fetal paternally inherited mutations in maternal plasma. J Med Genet 2016;53:481-7.

48. Galbiati S, Stenirri S, Sbaiz L, et al. Identification of an 18 bp deletion in the TWIST1 gene by CO-amplification at lower denaturation temperature-PCR (COLD-PCR) for non-invasive prenatal diagnosis of craniosynostosis: first case report. Clin Chem Lab Med 2014;52:505-9.

49. Byrou S, Makrigiorgos GM, Christofides A, Kallikas I, Papasavva T, Kleanthous M. Fast Temperature-Gradient COLD PCR for the enrichment of the paternally inherited SNPs in cell free fetal DNA; an application to non-invasive prenatal diagnosis of β-thalassaemia. PLoS One 2018;13:e0200348.

50. Mortazavipour MM, Shahbazi S, Mahdian R. Detection of paternal IVS-II-1 (G>A) (HBB: c.315+1G>A) mutation in cell-free fetal DNA using COLD-PCR assay. Hemoglobin 2020;44:168-73.

51. Ferro M, Macher HC, Noguerol P, et al. Non-invasive prenatal diagnosis of feto-maternal platelet incompatibility by cold high resolution melting analysis. In: Gahan PB, Fleischhacker M, Schmidt B, editors. Circulating nucleic acids in serum and plasma - CNAPS IX. Cham: Springer International Publishing; 2016. p. 67-70.

52. Morrison T, Hurley J, Garcia J, et al. Nanoliter high throughput quantitative PCR. Nucleic Acids Res 2006;34:e123.

53. Spurgeon SL, Jones RC, Ramakrishnan R. High throughput gene expression measurement with real time PCR in a microfluidic dynamic array. PLoS One 2008;3:e1662.

54. Vogelstein B, Kinzler KW. Digital PCR. Proc Natl Acad Sci USA 1999;96:9236-41.

55. Sillence KA, Roberts LA, Hollands HJ, et al. Fetal Sex and RHD genotyping with digital PCR demonstrates greater sensitivity than real-time PCR. Clin Chem 2015;61:1399-407.

56. Whale AS, Huggett JF, Cowen S, et al. Comparison of microfluidic digital PCR and conventional quantitative PCR for measuring copy number variation. Nucleic Acids Res 2012;40:e82.

57. Hindson BJ, Ness KD, Masquelier DA, et al. High-throughput droplet digital PCR system for absolute quantitation of DNA copy number. Anal Chem 2011;83:8604-10.

58. Tsui NB, Hyland CA, Gardener GJ, et al. Noninvasive fetal RHD genotyping by microfluidics digital PCR using maternal plasma from two alloimmunized women with the variant RHD(IVS3+1G>A) allele. Prenat Diagn 2013;33:1214-6.

59. Gruber A, Pacault M, El Khattabi LA, et al. Non-invasive prenatal diagnosis of paternally inherited disorders from maternal plasma: detection of NF1 and CFTR mutations using droplet digital PCR. Clin Chem Lab Med 2018;56:728-38.

60. Orhant L, Anselem O, Fradin M, et al. Droplet digital PCR combined with minisequencing, a new approach to analyze fetal DNA from maternal blood: application to the non-invasive prenatal diagnosis of achondroplasia. Prenat Diagn 2016;36:397-406.

61. Drury S, Mason S, Mckay F, et al. Implementing non-invasive prenatal diagnosis (NIPD) in a National Health Service Laboratory; From dominant to recessive disorders. In: Gahan PB, Fleischhacker M, Schmidt B, editors. Circulating nucleic acids in serum and plasma - CNAPS IX. Cham: Springer International Publishing; 2016. p. 71-5.

62. Mohan P, Lemoine J, Trotter C, et al. Clinical experience with non-invasive prenatal screening for single-gene disorders. Ultrasound Obstet Gynecol 2022;59:33-9.

63. Opinion No. 691: carrier screening for genetic conditions. Obstet Gynecol 2017;129:e41-55.

64. Natera. Vistara™ single-gene NIPT. Available from: https://www.natera.com/womens-health/vistara-nipt-single-gene-test/ [Last accessed on 21 Feb 2023].

65. Mellis R, Oprych K, Scotchman E, Hill M, Chitty LS. Diagnostic yield of exome sequencing for prenatal diagnosis of fetal structural anomalies: a systematic review and meta-analysis. Prenat Diagn 2022;42:662-85.

66. Filer DL, Kuo F, Brandt AT, et al. Pre-capture multiplexing provides additional power to detect copy number variation in exome sequencing. BMC Bioinformatics 2021;22:374.

67. Provenzano A, Palazzo V, Reho P, et al. Noninvasive prenatal diagnosis in a family at risk for Fraser syndrome. Prenat Diagn 2020;40:905-8.

68. Provenzano A, La Barbera A, Lai F, et al. Non-invasive detection of a de novo frameshift variant of STAG2 in a female fetus: escape genes influence the manifestation of X-linked diseases in females. J Clin Med 2022;11:4182.

69. Camunas-Soler J, Lee H, Hudgins L, et al. Noninvasive Prenatal Diagnosis of Single-Gene Disorders by Use of Droplet Digital PCR. Clin Chem 2018;64:336-45.

70. Perlado S, Bustamante-Aragonés A, Donas M, Lorda-Sánchez I, Plaza J, Rodríguez de Alba M. Fetal genotyping in maternal blood by digital PCR: towards NIPD of monogenic disorders independently of parental origin. PLoS One 2016;11:e0153258.

71. Lun FM, Tsui NB, Chan KC, et al. Noninvasive prenatal diagnosis of monogenic diseases by digital size selection and relative mutation dosage on DNA in maternal plasma. Proc Natl Acad Sci USA 2008;105:19920-5.

72. Constantinou CG, Karitzi E, Byrou S, et al. Optimized droplet digital PCR assay on cell-free DNA samples for non-invasive prenatal diagnosis: application to beta-thalassemia. Clin Chem 2022;68:1053-63.

73. Shaw J, Scotchman E, Paternoster B, et al. Non-invasive fetal genotyping for maternal alleles with droplet digital PCR: a comparative study of analytical approaches. Prenat Diagn 2023;Online ahead of print.

74. Barrett AN, McDonnell TC, Chan KC, Chitty LS. Digital PCR analysis of maternal plasma for noninvasive detection of sickle cell anemia. Clin Chem 2012;58:1026-32.

75. Caswell RC, Snowsill T, Houghton JAL, et al. Noninvasive fetal genotyping by droplet digital PCR to identify maternally inherited monogenic diabetes variants. Clin Chem 2020;66:958-65.

76. Tsui NB, Kadir RA, Chan KC, et al. Noninvasive prenatal diagnosis of hemophilia by microfluidics digital PCR analysis of maternal plasma DNA. Blood 2011;117:3684-91.

77. Hudecova I, Jiang P, Davies J, Lo YMD, Kadir RA, Chiu RWK. Noninvasive detection of F8 int22h-related inversions and sequence variants in maternal plasma of hemophilia carriers. Blood 2017;130:340-7.

78. Debrand E, Lykoudi A, Bradshaw E, Allen SK. A Non-invasive droplet digital PCR (ddPCR) assay to detect paternal CFTR mutations in the cell-free fetal DNA (cffDNA) of three pregnancies at risk of cystic fibrosis via compound heterozygosity. PLoS One 2015;10:e0142729.

79. Gu W, Koh W, Blumenfeld YJ, et al. Noninvasive prenatal diagnosis in a fetus at risk for methylmalonic acidemia. Genet Med 2014;16:564-7.

80. Chang MY, Kim AR, Kim MY, et al. Development of novel noninvasive prenatal testing protocol for whole autosomal recessive disease using picodroplet digital PCR. Sci Rep 2016;6:37153.

81. Chang MY, Ahn S, Kim MY, et al. One-step noninvasive prenatal testing (NIPT) for autosomal recessive homozygous point mutations using digital PCR. Sci Rep 2018;8:2877.

82. Wei X, Lv W, Tan H, Liang D, Wu L. Development and validation of a haplotype-free technique for non-invasive prenatal diagnosis of spinal muscular atrophy. J Clin Lab Anal 2020;34:e23046.

83. Sawakwongpra K, Tangmansakulchai K, Ngonsawan W, et al. Droplet-based digital PCR for non-invasive prenatal genetic diagnosis of α and β-thalassemia. Biomed Rep 2021;15:82.

84. Tan C, Chen X, Wang F, et al. A multiplex droplet digital PCR assay for non-invasive prenatal testing of fetal aneuploidies. Analyst 2019;144:2239-47.

85. D’Aversa E, Breveglieri G, Boutou E, et al. Droplet digital PCR for non-invasive prenatal detection of fetal single-gene point mutations in maternal plasma. Int J Mol Sci 2022;23:2819.

86. van Campen J, Silcock L, Yau S, et al. A novel non-invasive prenatal sickle cell disease test for all at-risk pregnancies. Br J Haematol 2020;190:119-24.

87. Yang X, Zhou Q, Zhou W, et al. A Cell-free DNA Barcode-enabled single-molecule test for noninvasive prenatal diagnosis of monogenic disorders: application to β-thalassemia. Adv Sci (Weinh) 2019;6:1802332.

88. Zhao G, Wang X, Liu L, Dai P, Kong X. Noninvasive prenatal diagnosis of duchenne muscular dystrophy in five Chinese families based on relative mutation dosage approach. BMC Med Genomics 2021;14:275.

89. Lv W, Wei X, Guo R, et al. Noninvasive prenatal testing for Wilson disease by use of circulating single-molecule amplification and resequencing technology (cSMART). Clin Chem 2015;61:172-81.

90. Han M, Li Z, Wang W, et al. A quantitative cSMART assay for noninvasive prenatal screening of autosomal recessive nonsyndromic hearing loss caused by GJB2 and SLC26A4 mutations. Genet Med 2017;19:1309-16.

91. Chen Y, Liu Y, Wang B, et al. Development and validation of a fetal genotyping assay with potential for noninvasive prenatal diagnosis of hereditary hearing loss. Prenat Diagn 2016;36:1233-41.

92. Xiong L, Barrett AN, Hua R, et al. Non-invasive prenatal testing for fetal inheritance of maternal β-thalassaemia mutations using targeted sequencing and relative mutation dosage: a feasibility study. BJOG 2018;125:461-8.

93. Lv W, Linpeng S, Li Z, et al. Noninvasive prenatal diagnosis for pregnancies at risk for β-thalassaemia: a retrospective study. BJOG 2021;128:448-57.

94. Duan H, Liu N, Zhao Z, et al. Non-invasive prenatal testing of pregnancies at risk for phenylketonuria. Arch Dis Child Fetal Neonatal Ed 2019;104:F24-9.

95. Lv W, Li Z, Wei X, et al. Noninvasive fetal genotyping in pregnancies at risk for PKU using a comprehensive quantitative cSMART assay for PAH gene mutations: a clinical feasibility study. BJOG 2019;126:1466-74.

96. Lv W, Liang L, Chen X, et al. Noninvasive prenatal testing of methylmalonic acidemia cblC Type using the cSMART assay for MMACHC gene mutations. Front Genet 2021;12:750719.

97. Song Y, Zhou X, Huang S, et al. Quantitation of fetal DNA fraction in maternal plasma using circulating single molecule amplification and re-sequencing technology (cSMART). Clin Chim Acta 2016;456:151-6.

98. Cutts A, Vavoulis DV, Petrou M, et al. A method for noninvasive prenatal diagnosis of monogenic autosomal recessive disorders. Blood 2019;134:1190-3.

99. Riku S, Hedriana H, Carozza JA, Hoskovec J. Reflex single-gene non-invasive prenatal testing is associated with markedly better detection of fetuses affected with single-gene recessive disorders at lower cost. J Med Econ 2022;25:403-11.

100. Hoskovec J, Hardisty EE, Talati AN, et al. Maternal carrier screening with single-gene NIPS provides accurate fetal risk assessments for recessive conditions. Genet Med 2023;25:100334.

101. Lam KW, Jiang P, Liao GJ, et al. Noninvasive prenatal diagnosis of monogenic diseases by targeted massively parallel sequencing of maternal plasma: application to β-thalassemia. Clin Chem 2012;58:1467-75.

102. Gerrish A, Bowns B, Mashayamombe-Wolfgarten C, et al. Non-invasive prenatal diagnosis of retinoblastoma inheritance by combined targeted sequencing strategies. J Clin Med 2020;9:3517.

103. Ma D, Ge H, Li X, et al. Haplotype-based approach for noninvasive prenatal diagnosis of congenital adrenal hyperplasia by maternal plasma DNA sequencing. Gene 2014;544:252-8.

104. Xu Y, Li X, Ge HJ, et al. Haplotype-based approach for noninvasive prenatal tests of Duchenne muscular dystrophy using cell-free fetal DNA in maternal plasma. Genet Med 2015;17:889-96.

105. West Midlands Regional Genetics Laboratory. NIPD for Congenital adrenal hyperplasia (CAH). Available from: https://bwc.nhs.uk/download.cfm?doc=docm93jijm4n4060.pdf&ver=6057 [Last accessed on 21 Feb 2023].

106. Hui WW, Jiang P, Tong YK, et al. Universal haplotype-based noninvasive prenatal testing for single gene diseases. Clin Chem 2017;63:513-24.

107. Pereira R, Oliveira J, Sousa M. Bioinformatics and computational tools for next-generation sequencing analysis in clinical genetics. J Clin Med 2020;9:132.

108. Jang SS, Lim BC, Yoo SK, et al. Targeted linked-read sequencing for direct haplotype phasing of maternal DMD alleles: a practical and reliable method for noninvasive prenatal diagnosis. Sci Rep 2018;8:8678.

109. Lee JS, Lee KB, Song H, et al. Direct Haplotyping-based noninvasive prenatal test for myotonic dystrophy type 1 with large cTG expansion. Clin Chem 2020;66:614-5.

110. Chen C, Chen M, Zhu Y, et al. Noninvasive prenatal diagnosis of monogenic disorders based on direct haplotype phasing through targeted linked-read sequencing. BMC Med Genomics 2021;14:244.

111. Liautard-Haag C, Durif G, VanGoethem C, et al. Noninvasive prenatal diagnosis of genetic diseases induced by triplet repeat expansion by linked read haplotyping and Bayesian approach. Sci Rep 2022;12:11423.

112. de Vree PJ, de Wit E, Yilmaz M, et al. Targeted sequencing by proximity ligation for comprehensive variant detection and local haplotyping. Nat Biotechnol 2014;32:1019-25.

113. Vermeulen C, Geeven G, de Wit E, et al. Sensitive monogenic noninvasive prenatal diagnosis by targeted haplotyping. Am J Hum Genet 2017;101:326-39.

114. Selvaraj S, R Dixon J, Bansal V, Ren B. Whole-genome haplotype reconstruction using proximity-ligation and shotgun sequencing. Nat Biotechnol 2013;31:1111-8.

115. Lefferts JW, Boersma V, Hagemeijer MC, Hajo K, Beekman JM, Splinter E. Targeted locus amplification and haplotyping. In: Peters BA, Drmanac R, editors. Haplotyping. New York: Springer US; 2023. p. 31-48.

116. Jiang F, Liu W, Zhang L, et al. Noninvasive prenatal testing for β-thalassemia by targeted nanopore sequencing combined with relative haplotype dosage (RHDO): a feasibility study. Sci Rep 2021;11:5714.

117. Chen X, Harting J, Farrow E, et al. Genomics England Research Consortium. Comprehensive SMN1 and SMN2 profiling for spinal muscular atrophy analysis using long-read PacBio HiFi sequencing. Am J Hum Genet 2023;110:240-50.

118. Grunau C, Clark SJ, Rosenthal A. Bisulfite genomic sequencing: systematic investigation of critical experimental parameters. Nucleic Acids Res 2001;29:E65-5.

119. Tse OYO, Jiang P, Cheng SH, et al. Genome-wide detection of cytosine methylation by single molecule real-time sequencing. Proc Natl Acad Sci USA 2021:118.

120. Katsman E, Orlanski S, Martignano F, et al. Detecting cell-of-origin and cancer-specific methylation features of cell-free DNA from Nanopore sequencing. Genome Biol 2022;23:158.

121. Ashoor G, Syngelaki A, Poon LC, Rezende JC, Nicolaides KH. Fetal fraction in maternal plasma cell-free DNA at 11-13 weeks’ gestation: relation to maternal and fetal characteristics. Ultrasound Obstet Gynecol 2013;41:26-32.

122. Lun FM, Chiu RW, Chan KC, Leung TY, Lau TK, Lo YM. Microfluidics digital PCR reveals a higher than expected fraction of fetal DNA in maternal plasma. Clin Chem 2008;54:1664-72.

123. Palomaki GE, Kloza EM, Lambert-Messerlian GM, et al. DNA sequencing of maternal plasma to detect Down syndrome: an international clinical validation study. Genet Med 2011;13:913-20.

124. Norton ME, Brar H, Weiss J, et al. Non-Invasive chromosomal evaluation (NICE) Study: results of a multicenter prospective cohort study for detection of fetal trisomy 21 and trisomy 18. Am J Obstet Gynecol 2012;207:137.e1-8.

125. Hudecova I, Chiu RW. Non-invasive prenatal diagnosis of thalassemias using maternal plasma cell free DNA. Best Pract Res Clin Obstet Gynaecol 2017;39:63-73.

126. Chiu RW, Akolekar R, Zheng YW, et al. Non-invasive prenatal assessment of trisomy 21 by multiplexed maternal plasma DNA sequencing: large scale validity study. BMJ 2011;342:c7401.

127. Kim SK, Hannum G, Geis J, et al. Determination of fetal DNA fraction from the plasma of pregnant women using sequence read counts. Prenat Diagn 2015;35:810-5.

128. Xu C, Li J, Chen S, et al. Genetic deconvolution of fetal and maternal cell-free DNA in maternal plasma enables next-generation non-invasive prenatal screening. Cell Discov 2022;8:109.

129. Liao GJ, Lun FM, Zheng YW, et al. Targeted massively parallel sequencing of maternal plasma DNA permits efficient and unbiased detection of fetal alleles. Clin Chem 2011;57:92-101.

130. Chan KC, Ding C, Gerovassili A, et al. Hypermethylated RASSF1A in maternal plasma: A universal fetal DNA marker that improves the reliability of noninvasive prenatal diagnosis. Clin Chem 2006;52:2211-8.

131. Nygren AO, Dean J, Jensen TJ, et al. Quantification of fetal DNA by use of methylation-based DNA discrimination. Clin Chem 2010;56:1627-35.

132. Lun FM, Chiu RW, Sun K, et al. Noninvasive prenatal methylomic analysis by genomewide bisulfite sequencing of maternal plasma DNA. Clin Chem 2013;59:1583-94.

133. Sun K, Jiang P, Chan KC, et al. Plasma DNA tissue mapping by genome-wide methylation sequencing for noninvasive prenatal, cancer, and transplantation assessments. Proc Natl Acad Sci USA 2015;112:E5503-12.

134. Schroeder DI, Blair JD, Lott P, et al. The human placenta methylome. Proc Natl Acad Sci USA 2013;110:6037-42.

135. Ioannides M, Achilleos A, Kyriakou S, et al. Development of a new methylation-based fetal fraction estimation assay using multiplex ddPCR. Mol Genet Genomic Med 2020;8:e1094.

136. Yu SC, Chan KC, Zheng YW, et al. Size-based molecular diagnostics using plasma DNA for noninvasive prenatal testing. Proc Natl Acad Sci USA 2014;111:8583-8.

137. Straver R, Oudejans CB, Sistermans EA, Reinders MJ. Calculating the fetal fraction for noninvasive prenatal testing based on genome-wide nucleosome profiles. Prenat Diagn 2016;36:614-21.

138. Mouawia H, Saker A, Jais JP, et al. Circulating trophoblastic cells provide genetic diagnosis in 63 fetuses at risk for cystic fibrosis or spinal muscular atrophy. Reprod Biomed Online 2012;25:508-20.

139. Bianchi DW, Simpson JL, Jackson LG, et al. Fetal gender and aneuploidy detection using fetal cells in maternal blood: analysis of NIFTY I data. National Institute of Child Health and Development Fetal Cell Isolation Study. Prenat Diagn 2002;22:609-15.

140. Chen F, Liu P, Gu Y, et al. Isolation and whole genome sequencing of fetal cells from maternal blood towards the ultimate non-invasive prenatal testing. Prenat Diagn 2017;37:1311-21.

141. Hatt L, Singh R, Christensen R, et al. Cell-based noninvasive prenatal testing (cbNIPT) detects pathogenic copy number variations. Clin Case Rep 2020;8:2561-7.

142. Ravn K, Singh R, Hatt L, et al. The number of circulating fetal extravillous trophoblasts varies from gestational week 6 to 20. Reprod Sci 2020;27:2170-4.

143. Jeppesen LD, Lildballe DL, Hatt L, et al. Noninvasive prenatal screening for cystic fibrosis using circulating trophoblasts: Detection of the 50 most common disease-causing variants. Prenat Diagn 2023;43:3-13.

144. Vossaert L, Chakchouk I, Zemet R, Van den Veyver IB. Overview and recent developments in cell-based noninvasive prenatal testing. Prenat Diagn 2021;41:1202-14.

145. Cayrefourcq L, Vincent MC, Pierredon S, et al. Single circulating fetal trophoblastic cells eligible for non invasive prenatal diagnosis: the exception rather than the rule. Sci Rep 2020;10:9861.

146. Chang L, Zhu X, Li R, et al. A novel method for noninvasive diagnosis of monogenic diseases from circulating fetal cells. Prenat Diagn 2021;41:400-8.

147. Toft CLF, Ingerslev HJ, Kesmodel US, et al. Cell-based non-invasive prenatal testing for monogenic disorders: confirmation of unaffected fetuses following preimplantation genetic testing. J Assist Reprod Genet 2021;38:1959-70.

148. Wei X, Chen K, Guo S, Liu W, Zhao XZ. Emerging microfluidic technologies for the detection of circulating tumor cells and fetal nucleated red blood cells. ACS Appl Bio Mater 2021;4:1140-55.

149. Bianchi DW, Williams JM, Sullivan LM, Hanson FW, Klinger KW, Shuber AP. PCR quantitation of fetal cells in maternal blood in normal and aneuploid pregnancies. Am J Hum Genet 1997;61:822-9.

150. Imudia AN, Suzuki Y, Kilburn BA, et al. Retrieval of trophoblast cells from the cervical canal for prediction of abnormal pregnancy: a pilot study. Hum Reprod 2009;24:2086-92.

151. Bolnick JM, Kilburn BA, Bajpayee S, et al. Trophoblast retrieval and isolation from the cervix (TRIC) for noninvasive prenatal screening at 5 to 20 weeks of gestation. Fertil Steril 2014;102:135-142.e6.

Extracellular Vesicles and Circulating Nucleic Acids
ISSN 2767-6641 (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/