REFERENCES
1. Sultana H, Neelakanta G. Arthropod exosomes as bubbles with message(s) to transmit vector-borne diseases. Curr Opin Insect Sci 2020;40:39-47.
2. Zhou W, Woodson M, Sherman MB, Neelakanta G, Sultana H. Exosomes mediate Zika virus transmission through SMPD3 neutral Sphingomyelinase in cortical neurons. Emerg Microbes Infect 2019;8:307-26.
3. Zhou W, Woodson M, Neupane B, et al. Exosomes serve as novel modes of tick-borne flavivirus transmission from arthropod to human cells and facilitates dissemination of viral RNA and proteins to the vertebrate neuronal cells. PLoS Pathog 2018;14:e1006764.
4. Vora A, Zhou W, Londono-Renteria B, et al. Arthropod EVs mediate dengue virus transmission through interaction with a tetraspanin domain containing glycoprotein Tsp29Fb. Proc Natl Acad Sci USA 2018;115:E6604-13.
5. Sampey GC, Meyering SS, Zadeh MA, Saifuddin M, Hakami RM, Kashanchi F. Exosomes and their role in CNS viral infections. J Neurovirol 2014;20:199-208.
6. Martin-Jaular L, Nakayasu ES, Ferrer M, Almeida IC, Del Portillo HA. Exosomes from Plasmodium yoelii-infected reticulocytes protect mice from lethal infections. PLoS One 2011;6:e26588.
7. Bansal S, Limaye AP, Lee J, et al. Circulating exosomes induced by respiratory viral infections in lung transplant recipients activate cellular stress, innate immune pathways and epithelial to mesenchymal transition. Transpl Immunol 2021;69:101480.
8. Rezaie J, Aslan C, Ahmadi M, Zolbanin NM, Kashanchi F, Jafari R. The versatile role of exosomes in human retroviral infections: from immunopathogenesis to clinical application. Cell Biosci 2021;11:19.
9. Wang Q, Ding X, Zhen F, Ma J, Meng F. Remedial applications of exosomes in cancer, infections and diabetes. Acta Pol Pharm 2017;74:313-20.
10. Zhang W, Jiang X, Bao J, Wang Y, Liu H, Tang L. Exosomes in pathogen infections: a bridge to deliver molecules and link functions. Front Immunol 2018;9:90.
11. Jungbauer A. Exosomes enter vaccine development: strategies meeting global challenges of emerging infections. Biotechnol J 2018;13:e1700749.
12. Coakley G, Maizels RM, Buck AH. Exosomes and other extracellular vesicles: the new communicators in parasite infections. Trends Parasitol 2015;31:477-89.
13. Landis JT, Tuck R, Pan Y, et al. Evidence for multiple subpopulations of herpesvirus-latently infected cells. mBio 2022:e0347321.
14. Huang HJ, Yi SG, Mobley CM, et al. Early humoral immune response to two doses of severe acute respiratory syndrome coronavirus 2 vaccine in a diverse group of solid organ transplant candidates and recipients. Clin Transplant 2022;36:e14600.
15. Ouoba S, Okimoto M, Nagashima S, et al. Sequential dynamics of virological and serological changes in the serum of SARS-CoV-2 infected patients. J Med Virol 2022;94:1734-7.
16. Gilbert PB, Montefiori DC, McDermott AB, et al. Immune Assays Team§. , Moderna, Inc. Team§., Coronavirus Vaccine Prevention Network (CoVPN)/Coronavirus Efficacy (COVE) Team§., United States Government (USG)/CoVPN Biostatistics Team§. Immune correlates analysis of the mRNA-1273 COVID-19 vaccine efficacy clinical trial. Science 2022;375:43-50.
17. Hayashi T, Takeshita Y, Hutin YJ, et al. The global hepatitis delta virus (HDV) epidemic: what gaps to address in order to mount a public health response? Arch Public Health 2021;79:180.
18. Earnest R, Uddin R, Matluk N, et al. New England Variant Investigation Team. Comparative transmissibility of SARS-CoV-2 variants Delta and Alpha in New England, USA. medRxiv 2021:preprint.
19. Thom RE, Eastaugh LS, O’brien LM, et al. Evaluation of the SARS-CoV-2 inactivation efficacy associated with buffers from three kits used on high-throughput RNA extraction platforms. Front Cell Infect Microbiol 2021;11:716436.
20. Watson RJ, Tree J, Fotheringham SA, et al. Dose-dependent response to infection with ebola virus in the ferret model and evidence of viral evolution in the eye. J Virol 2021;95:e0083321.
21. Johnston D, Earley B, McCabe MS, et al. Elucidation of the host bronchial lymph node miRNA transcriptome response to bovine respiratory syncytial virus. Front Genet 2021;12:633125.
22. Johnston D, Earley B, McCabe MS, et al. Messenger RNA biomarkers of Bovine Respiratory Syncytial Virus infection in the whole blood of dairy calves. Sci Rep 2021;11:9392.
23. Neelakanta G, Sultana H. Tick saliva and salivary glands: what do we know so far on their role in arthropod blood feeding and pathogen transmission. Front Cell Infect Microbiol 2021;11:816547.
24. Zhou W, Tahir F, Wang JC, et al. Discovery of exosomes from tick saliva and salivary glands reveals therapeutic roles for CXCL12 and IL-8 in wound healing at the tick-human skin interface. Front Cell Dev Biol 2020;8:554.
25. Regmi P, Khanal S, Neelakanta G, Sultana H. Tick-borne flavivirus inhibits sphingomyelinase (IsSMase), a venomous spider ortholog to increase sphingomyelin lipid levels for its survival in Ixodes scapularis ticks. Front Cell Infect Microbiol 2020;10:244.
26. Rego ROM, Trentelman JJA, Anguita J, et al. Counterattacking the tick bite: towards a rational design of anti-tick vaccines targeting pathogen transmission. Parasit Vectors 2019;12:229.
27. Ahmed W, Rajendran KV, Neelakanta G, Sultana H. An experimental murine model to study acquisition dynamics of tick-borne langat virus in Ixodes scapularis. Front Microbiol 2022;13:849313.
28. Maqbool M, Sajid MS, Saqib M, et al. Potential mechanisms of transmission of tick-borne viruses at the virus-tick interface. Front Microbiol 2022;13:846884.
29. Santos RI, Hermance ME, Reynolds ES, Thangamani S. Salivary gland extract from the deer tick, Ixodes scapularis, facilitates neuroinvasion by Powassan virus in BALB/c mice. Sci Rep 2021;11:20873.
30. Hart CE, Thangamani S. Tick-virus interactions: current understanding and future perspectives. Parasite Immunol 2021;43:e12815.
31. Hart CE, Ribeiro JM, Kazimirova M, Thangamani S. Tick-borne encephalitis virus infection alters the sialome of ixodes ricinus ticks during the earliest stages of feeding. Front Cell Infect Microbiol 2020;10:41.
32. Boulanger N, Wikel S. Induced transient immune tolerance in ticks and vertebrate host: a keystone of tick-borne diseases? Front Immunol 2021;12:625993.
34. Wikel SK. Tick-host-pathogen systems immunobiology: an interactive trio. Front Biosci 2018;23:265-83.
35. Wikel S. Ticks and tick-borne pathogens at the cutaneous interface: host defenses, tick countermeasures, and a suitable environment for pathogen establishment. Front Microbiol 2013;4:337.
36. Chen G, Severo MS, Sohail M, et al. Ixodes scapularis saliva mitigates inflammatory cytokine secretion during Anaplasma phagocytophilum stimulation of immune cells. Parasit Vectors 2012;5:229.
37. Krause PJ, Grant-Kels JM, Tahan SR, et al. Dermatologic changes induced by repeated Ixodes scapularis bites and implications for prevention of tick-borne infection. Vector Borne Zoonotic Dis 2009;9:603-10.
38. Müller-Doblies UU, Maxwell SS, Boppana VD, et al. Feeding by the tick, Ixodes scapularis, causes CD4(+) T cells responding to cognate antigen to develop the capacity to express IL-4. Parasite Immunol 2007;29:485-99.
39. Pagel Van Zee J, Geraci NS, Guerrero FD, et al. Tick genomics: the Ixodes genome project and beyond. Int J Parasitol 2007;37:1297-305.
40. Neelakanta G, Sultana H. Transmission-blocking vaccines: focus on anti-vector vaccines against tick-borne diseases. Arch Immunol Ther Exp 2015;63:169-79.
41. Mans BJ. The basis of molecular diagnostics for piroplasmids: do the sequences lie? Ticks Tick Borne Dis 2022;13:101907.
42. Reck J, Webster A, Dall'Agnol B, et al. Transcriptomic analysis of salivary glands of ornithodoros brasiliensis Aragão, 1923, the agent of a neotropical tick-toxicosis syndrome in humans. Front Physiol 2021;12:725635.
43. Pienaar R, de Klerk DG, de Castro MH, Featherston J, Mans BJ. De novo assembled salivary gland transcriptome and expression pattern analyses for Rhipicephalus evertsi evertsi Neuman, 1897 male and female ticks. Sci Rep 2021;11:1642.
44. Mans BJ. Quantitative visions of reality at the tick-host interface: biochemistry, genomics, proteomics, and transcriptomics as measures of complete inventories of the tick sialoverse. Front Cell Infect Microbiol 2020;10:574405.
45. Ribeiro JMC, Mans BJ. TickSialoFam (TSFam): a database that helps to classify tick salivary proteins, a review on tick salivary protein function and evolution, with considerations on the tick sialome switching phenomenon. Front Cell Infect Microbiol 2020;10:374.
46. Grabowski JM, Perera R, Roumani AM, et al. Changes in the proteome of langat-infected ixodes scapularis ISE6 cells: metabolic pathways associated with flavivirus infection. PLoS Negl Trop Dis 2016;10:e0004180.
47. Grabowski JM, Gulia-Nuss M, Kuhn RJ, Hill CA. RNAi reveals proteins for metabolism and protein processing associated with Langat virus infection in Ixodes scapularis (black-legged tick) ISE6 cells. Parasit Vectors 2017;10:24.
48. Ahmed W, Neelakanta G, Sultana H. Tetraspanins as potential therapeutic candidates for targeting flaviviruses. Front Immunol 2021;12:630571.
49. Rajendran KV, Neelakanta G, Sultana H. Sphingomyelinases in a journey to combat arthropod-borne pathogen transmission. FEBS Lett 2021;595:1622-38.
50. Kurtti TJ, Mattila JT, Herron MJ, et al. Transgene expression and silencing in a tick cell line: a model system for functional tick genomics. Insect Biochem Mol Biol 2008;38:963-8.
51. Oliver JD, Chávez AS, Felsheim RF, Kurtti TJ, Munderloh UG. An Ixodes scapularis cell line with a predominantly neuron-like phenotype. Exp Appl Acarol 2015;66:427-42.
52. Chambers TJ, Diamond MS. Pathogenesis of flavivirus encephalitis. Adv Virus Res 2003;60:273-342.
54. Mukhopadhyay S, Kuhn RJ, Rossmann MG. A structural perspective of the flavivirus life cycle. Nat Rev Microbiol 2005;3:13-22.
56. Alem F, Olanrewaju AA, Omole S, et al. Exosomes originating from infection with the cytoplasmic single-stranded RNA virus Rift Valley fever virus (RVFV) protect recipient cells by inducing RIG-I mediated IFN-B response that leads to activation of autophagy. Cell Biosci 2021;11:220.
57. Kim Y, Mensah GA, Al Sharif S, et al. Extracellular vesicles from infected cells are released prior to virion release. Cells 2021;10:781.
58. Al Sharif S, Pinto DO, Mensah GA, et al. Extracellular vesicles in HTLV-1 communication: the story of an invisible messenger. Viruses 2020;12:1422.
59. Pulliam L, Liston M, Sun B, Narvid J. Using neuronal extracellular vesicles and machine learning to predict cognitive deficits in HIV. J Neurovirol 2020;26:880-7.
60. Sun B, Fernandes N, Pulliam L. Profile of neuronal exosomes in HIV cognitive impairment exposes sex differences. AIDS 2019;33:1683-92.
61. Sun B, Dalvi P, Abadjian L, Tang N, Pulliam L. Blood neuron-derived exosomes as biomarkers of cognitive impairment in HIV. AIDS 2017;31:F9-F17.
62. Pulliam L, Gupta A. Modulation of cellular function through immune-activated exosomes. DNA Cell Biol 2015;34:459-63.
64. Cheng Y, Zeng Q, Han Q, Xia W. Effect of pH, temperature and freezing-thawing on quantity changes and cellular uptake of exosomes. Protein Cell 2019;10:295-9.
65. Liu X, Zong Z, Xing M, Liu X, Li J, Liu D. pH-mediated clustering of exosomes: breaking through the size limit of exosome analysis in conventional flow cytometry. Nano Lett 2021;21:8817-23.
66. Li M, Li R, Yang S, et al. Exosomes derived from bone marrow mesenchymal stem cells prevent acidic pH-induced damage in human nucleus pulposus cells. Med Sci Monit 2020;26:e922928.
67. Du K, Sun X, Tang X, Xu H, Duan P, et al. Effects of storage temperature and time on quality of plasma exosomes extracted by ExoQuick(TM) and Umibio kits. Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi 2020;36:330-6.
68. Charoenviriyakul C, Takahashi Y, Nishikawa M, Takakura Y. Preservation of exosomes at room temperature using lyophilization. Int J Pharm 2018;553:1-7.
69. Yuan F, Li YM, Wang Z. Preserving extracellular vesicles for biomedical applications: consideration of storage stability before and after isolation. Drug Deliv 2021;28:1501-9.
70. Kumeda N, Ogawa Y, Akimoto Y, Kawakami H, Tsujimoto M, Yanoshita R. Characterization of membrane integrity and morphological stability of human salivary exosomes. Biol Pharm Bull 2017;40:1183-91.
71. Sokolova AS, Yarovaya OI, Baranova DV, et al. Quaternary ammonium salts based on (-)-borneol as effective inhibitors of influenza virus. Arch Virol 2021;166:1965-76.
72. Kaushik N, Subramani C, Anang S, et al. Zinc salts block hepatitis E virus replication by inhibiting the activity of viral RNA-dependent RNA polymerase. J Virol 2017;91:e00754-17.
73. Macleod MK, David A, Jin N, et al. Influenza nucleoprotein delivered with aluminium salts protects mice from an influenza A virus that expresses an altered nucleoprotein sequence. PLoS One 2013;8:e61775.
74. Wei Z, Burwinkel M, Palissa C, Ephraim E, Schmidt MF. Antiviral activity of zinc salts against transmissible gastroenteritis virus in vitro. Vet Microbiol 2012;160:468-72.
75. Bourne N, Stegall R, Montano R, Meador M, Stanberry LR, Milligan GN. Efficacy and toxicity of zinc salts as candidate topical microbicides against vaginal herpes simplex virus type 2 infection. Antimicrob Agents Chemother 2005;49:1181-3.
76. Suara RO, Crowe JE Jr. Effect of zinc salts on respiratory syncytial virus replication. Antimicrob Agents Chemother 2004;48:783-90.
77. Arens M, Travis S. Zinc salts inactivate clinical isolates of herpes simplex virus in vitro. J Clin Microbiol 2000;38:1758-62.
78. Sergio W. Zinc salts that may be effective against the AIDS virus HIV. Med Hypotheses 1988;26:251-3.
79. Wickerhauser M, Williams C. The effects of salts on virus inactivation by lyophilization and dry heat. Vox Sang 1987;53:188-9.
80. Lebeurier G, Lonchampt M, Hirth L. Effect of salts on tobacco mosaic virus reconstitution. FEBS Letters 1973;35:54-8.