REFERENCES
1. Ding, F.; Ji, P.; Han, Z.; et al. Tailoring planar strain for robust structural stability in high-entropy layered sodium oxide cathode materials. Nat. Energy. 2024, 9, 1529-39.
2. Lu, X.; Lagnoni, M.; Bertei, A.; et al. Multiscale dynamics of charging and plating in graphite electrodes coupling operando microscopy and phase-field modelling. Nat. Commun. 2023, 14, 5127.
3. Otoyama, M.; Wanibuchi, M.; Takeuchi, T.; et al. LixVSy nanocomposite electrodes for high-energy carbon-additive-free all-solid-state lithium-sulfur batteries. Energy. Mater. 2025, 5, 500126.
4. Yuan, M.; Liu, H.; Ran, F. Fast-charging cathode materials for lithium & sodium ion batteries. Mater. Today. 2023, 63, 360-79.
5. Chen, K.; Namkoong, M. J.; Goel, V.; et al. Efficient fast-charging of lithium-ion batteries enabled by laser-patterned three-dimensional graphite anode architectures. J. Power. Sources. 2020, 471, 228475.
6. Xie, F.; Xu, J.; Liao, Q.; et al. Progress in niobium-based oxides as anode for fast-charging Li-ion batteries. Energy. Rev. 2023, 2, 100027.
7. Li, Y.; Vasileiadis, A.; Zhou, Q.; et al. Origin of fast charging in hard carbon anodes. Nat. Energy. 2024, 9, 134-42.
8. Wang, Y.; Dang, D.; Li, D.; Hu, J.; Zhan, X.; Cheng, Y. Effects of polymeric binders on the cracking behavior of silicon composite electrodes during electrochemical cycling. J. Power. Sources. 2019, 438, 226938.
9. Müller, S.; Pietsch, P.; Brandt, B. E.; et al. Quantification and modeling of mechanical degradation in lithium-ion batteries based on nanoscale imaging. Nat. Commun. 2018, 9, 2340.
10. Ogihara, N.; Itou, Y.; Sasaki, T.; Takeuchi, Y. Impedance spectroscopy characterization of porous electrodes under different electrode thickness using a symmetric cell for high-performance lithium-ion batteries. J. Phys. Chem. C. 2015, 119, 4612-9.
11. Li, X.; Chen, Y.; Lu, Y.; et al. Spatial-dependent coupling of electrochemistry, mass transport, and stress in silicon-graphite composite electrodes for lithium-ion batteries. Adv. Funct. Mater. 2024, 35, 2413560.
12. Yang, Y.; Liu, C.; Su, M.; et al. Kinetic mechanism and structural design of thick electrodes in lithium-ion batteries: challenges and optimization strategies. Small 2025, 21, e06931.
13. Wood, M.; Li, J.; Du, Z.; et al. Impact of secondary particle size and two-layer architectures on the high-rate performance of thick electrodes in lithium-ion battery pouch cells. J. Power. Sources. 2021, 515, 230429.
14. Zhang, X.; Hui, Z.; King, S. T.; et al. Gradient architecture design in scalable porous battery electrodes. Nano. Lett. 2022, 22, 2521-8.
15. Niu, X.; Lu, Y.; Chen, P.; et al. Gradient-matched microstructural engineering for fast-charging, damage-tolerant thick electrodes of lithium-ion batteries. Adv. Energy. Mater. 2025, 15, 2502245.
17. Ju, Z.; Zhang, X.; King, S. T.; et al. Unveiling the dimensionality effect of conductive fillers in thick battery electrodes for high-energy storage systems. Appl. Phys. Rev. 2020, 7, 041405.
18. Pan, S.; Fang, W.; Yan, J.; Zhang, S.; Zhang, H. Multiscale coupled electron-ion transport in semi-solid lithium flow batteries. Energy. Environ. Sci. 2025, 18, 5868-96.
19. Wei, T. S.; Fan, F. Y.; Helal, A.; et al. Biphasic electrode suspensions for li-ion semi-solid flow cells with high energy density, fast charge transport, and low-dissipation flow. Adv. Energy. Mater. 2015, 5, 1500535.
20. Bazant, M. Z. Unified quantum theory of electrochemical kinetics by coupled ion-electron transfer. Faraday. Discuss. 2023, 246, 60-124.
21. Zhang, Y.; Fraggedakis, D.; Gao, T.; et al. Lithium-ion intercalation by coupled ion-electron transfer. Science 2025, 390, eadq2541.
22. Fu, K.; Li, X.; Sun, K.; et al. Rational design of thick electrodes in lithium-ion batteries by re-understanding the relationship between thermodynamics and kinetics. Adv. Funct. Mater. 2024, 34, 2409623.
23. Goel, V.; Chen, K.; Dasgupta, N. P.; Thornton, K. Optimization of laser-patterned electrode architectures for fast charging of Li-ion batteries using simulations parameterized by machine learning. Energy. Storage. Mater. 2023, 57, 44-58.
24. Wang, F.; Tang, M. A quantitative analytical model for predicting and optimizing the rate performance of battery cells. Cell. Rep. Phys. Sci. 2020, 1, 100192.
25. Quilty, C. D.; Wu, D.; Li, W.; et al. Electron and ion transport in lithium and lithium-ion battery negative and positive composite electrodes. Chem. Rev. 2023, 123, 1327-63.
26. Kuang, Y.; Chen, C.; Pastel, G.; et al. Conductive cellulose nanofiber enabled thick electrode for compact and flexible energy storage devices. Adv. Energy. Mater. 2018, 8, 1802398.
27. Sun, H.; Mei, L.; Liang, J.; et al. Three-dimensional holey-graphene/niobia composite architectures for ultrahigh-rate energy storage. Science 2017, 356, 599-604.
28. Xu, Y.; Peng, Y.; Xiong, X.; et al. Electrochemically active materials as critical components for next-generation solid-state electrolytes. Energy. Z. 2025, 1, 100004.
29. Riess, I. Mixed ionic-electronic conductors - material properties and applications. Solid. State. Ion. 2003, 157, 1-17.
30. Wang, D.; Gwalani, B.; Wierzbicki, D.; et al. Overcoming the conversion reaction limitation at three-phase interfaces using mixed conductors towards energy-dense solid-state Li-S batteries. Nat. Mater. 2025, 24, 243-51.
31. Geng, W.; Hu, X.; Zhou, Q.; et al. Rational design of trifunctional conductive binder for high-performance Si anodes in lithium-ion batteries. J. Power. Sources. 2024, 601, 234285.
32. Yu, Y.; Zhu, J.; Zhang, J.; Jiang, M. Bridging conductivity and stability: challenges and progress in organic ionic-electronic conductors for overcoming Si anodes degradation in high-energy lithium-ion batteries. Prog. Mater. Sci. 2026, 156, 101546.


