REFERENCES
1. Gautam, J.; Lee, S.; Park, S. Strategic structural design of transition metal electrocatalysts for efficient water splitting: a comprehensive review. Nano. Today. 2024, 59, 102487.
2. Miao, H.; Zhang, D.; Shi, Y.; et al. Ultrasmall noble metal doped Ru2P@Ru/CNT as high-performance hydrogen evolution catalysts. ACS. Sustain. Chem. Eng. 2021, 9, 15063-71.
3. Frydendal, R.; Paoli, E. A.; Knudsen, B. P.; et al. Benchmarking the stability of oxygen evolution reaction catalysts: the importance of monitoring mass losses. ChemElectroChem 2014, 1, 2075-81.
4. Zhu, Y.; Wang, J.; Weiser, G.; et al. Ru single atoms and sulfur anions dual-doped NiFe layered double hydroxides for high-current-density alkaline oxygen evolution reaction. Adv. Energy. Mater. 2025, 15, 2500554.
5. Wei, J.; Tang, H.; Sheng, L.; et al. Site-specific metal-support interaction to switch the activity of Ir single atoms for oxygen evolution reaction. Nat. Commun. 2024, 15, 559.
6. Kim, J. S.; Kim, B.; Kim, H.; Kang, K. Recent progress on multimetal oxide catalysts for the oxygen evolution reaction. Adv. Energy. Mater. 2018, 8, 1702774.
7. Qin, Y.; Yu, T.; Deng, S.; et al. RuO2 electronic structure and lattice strain dual engineering for enhanced acidic oxygen evolution reaction performance. Nat. Commun. 2022, 13, 3784.
8. Hao, S.; Liu, M.; Pan, J.; et al. Dopants fixation of Ruthenium for boosting acidic oxygen evolution stability and activity. Nat. Commun. 2020, 11, 5368.
9. Zhang, L.; Jang, H.; Liu, H.; et al. Sodium-decorated amorphous/crystalline RuO2 with rich oxygen vacancies: a robust pH-universal oxygen evolution electrocatalyst. Angew. Chem. Int. Ed. 2021, 60, 18821-9.
10. Yao, Q.; Huang, B.; Zhang, N.; Sun, M.; Shao, Q.; Huang, X. Channel-rich RuCu nanosheets for pH-universal overall water splitting electrocatalysis. Angew. Chem. Int. Ed. 2019, 58, 13983-8.
11. Lin, C.; Li, J.; Li, X.; et al. In-situ reconstructed Ru atom array on α-MnO2 with enhanced performance for acidic water oxidation. Nat. Catal. 2021, 4, 1012-23.
12. Shi, Z.; Li, J.; Wang, Y.; et al. Customized reaction route for ruthenium oxide towards stabilized water oxidation in high-performance PEM electrolyzers. Nat. Commun. 2023, 14, 843.
13. Al, Zoubi. W.; Al, Mahmud. A.; Hazmatulhaq, F.; et al. Origin of the synergistic effects of bimetallic nanoparticles coupled with a metal oxide heterostructure for accelerating catalytic performance. SusMat 2024, 4, e216.
14. Zoubi W, Sheng Y, Hussain I, Seongjun H, Thalji MR, Park N. Synthesis and machine learning prediction of high entropy multi-principal element nanoparticles. Small 2025, 21, e2501444.
15. Wu, Z. Y.; Chen, F. Y.; Li, B.; et al. Non-iridium-based electrocatalyst for durable acidic oxygen evolution reaction in proton exchange membrane water electrolysis. Nat. Mater. 2023, 22, 100-8.
16. Zheng, X.; Yang, J.; Xu, Z.; et al. Ru-Co pair sites catalyst boosts the energetics for the oxygen evolution reaction. Angew. Chem. Int. Ed. 2022, 61, e202205946.
17. Liu, L.; Ji, Y.; You, W.; et al. Trace lattice S inserted RuO2 flexible nanosheets for efficient and long-term acidic oxygen evolution catalysis. Small 2023, 19, e2208202.
18. Liu, H.; Zhang, Z.; Fang, J.; et al. Eliminating over-oxidation of ruthenium oxides by niobium for highly stable electrocatalytic oxygen evolution in acidic media. Joule 2023, 7, 558-73.
19. Zhang, C.; Wang, J.; Ma, H.; et al. Electronic structure engineering of NiFe hydroxide nanosheets via ion doping for efficient OER electrocatalysis. Chem. Eng. J. 2024, 499, 156430.
20. Zheng, S.; Xu, H.; Zhu, H.; et al. Heterostructured electrocatalysts for the oxygen evolution reaction. J. Mater. Chem. A. 2024, 12, 18832-65.
21. Wang, H.; Fan, W.; Yang, S.; et al. Deeply understanding electrocatalytic oxygen evolution reaction from the perspective of defect structures. Chem. Eng. J. 2024, 499, 156124.
22. Zhang, J.; Chen, Q.; Zhao, P.; et al. Room temperature synthesis of gradient-distributed Ni/Fe sites in layered double hydroxides for enhanced oxygen evolution reaction. Small 2025, 21, e2409265.
23. Mu, X.; Yu, M.; Liu, X.; et al. High-entropy ultrathin amorphous metal-organic framework-stabilized Ru(Mo) dual-atom sites for water oxidation. ACS. Energy. Lett. 2024, 9, 5763-70.
24. González-ingelmo, M.; García, M. L.; Oropeza, F. E.; et al. Ultra-high dispersion of Ni-based OER catalysts on graphene 3D networks enhances the in situ Fe3+ catalytic activation. J. Mater. Chem. A. 2023, 11, 24248-60.
25. Zuo, S.; Wu, Z. P.; Zhang, G.; et al. Correlating structural disorder in metal (Oxy)hydroxides and catalytic activity in electrocatalytic oxygen evolution. Angew. Chem. Int. Ed. 2024, 63, e202316762.
26. Gao, T.; Kumar, K. S.; Yan, Z.; et al. Covalent organic framework derived synthesis of Ru embedded in carbon nitride for hydrogen and oxygen evolution reactions. J. Mater. Chem. A. 2023, 11, 19338-48.
27. Wang, Y.; Zhao, L.; Ma, J.; Zhang, J. Confined interface transformation of metal-organic frameworks for highly efficient oxygen evolution reactions. Energy. Environ. Sci. 2022, 15, 3830-41.
28. Zhang, D.; Miao, H.; Wu, X.; et al. Scalable synthesis of ultra-small Ru2P@Ru/CNT for efficient seawater splitting. Chin. J. Catal. 2022, 43, 1148-55.
29. Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15-50.
30. Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B. Condens. Matter. 1996, 54, 11169-86.
31. Kresse, G.; Hafner, J. Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium. Phys. Rev. B. Condens. Matter. 1994, 49, 14251-69.
32. Torres, E.; Kaloni, T. Projector augmented-wave pseudopotentials for uranium-based compounds. Comput. Mater. Sci. 2020, 171, 109237.
33. Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865-8.
34. Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010, 132, 154104.
35. Nørskov, J. K.; Rossmeisl, J.; Logadottir, A.; et al. Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J. Phys. Chem. B. 2004, 108, 17886-92.
36. Wang, V.; Xu, N.; Liu, J.; Tang, G.; Geng, W. VASPKIT: a user-friendly interface facilitating high-throughput computing and analysis using VASP code. Comput. Phys. Commun. 2021, 267, 108033.
37. Jin, H.; Li, Z.; Wang, L.; Zeng, Q. Fabrication and properties of CNT /Ni/Y/ZrB2 nanocomposites reinforced in situ. J. Am. Ceram. Soc. 2018, 101, 1747-53.
38. Yan, H.; Jiang, Z.; Deng, B.; Wang, Y.; Jiang, Z. Ultrathin carbon coating and defect engineering promote RuO2 as an efficient catalyst for acidic oxygen evolution reaction with super-high durability. Adv. Energy. Mater. 2023, 13, 2300152.
39. Xu, Z.; Wang, S.; Tu, W.; et al. A superior bifunctional electrocatalyst in which directional electron transfer occurs between a Co/Ni alloy and Fe-N-C support. Small 2024, 20, e2401730.
40. Das, D.; Santra, S.; Nanda, K. K. In Situ fabrication of a nickel/molybdenum carbide-anchored n-doped graphene/CNT hybrid: an efficient (Pre)catalyst for OER and HER. ACS. Appl. Mater. Interfaces. 2018, 10, 35025-38.
41. Wang, H.; Luan, X.; Li, H.; et al. Ru-M (Fe, Co, Ni) onto nitrogen-doped two-dimensional carbon nanosheets through microwave approach with strong metal-support interactions for overall water-splitting. Chem. Eng. J. 2024, 502, 158063.
42. Gao, T.; Zhou, C.; Chen, X.; Huang, Z.; Yuan, H.; Xiao, D. Surface in situ self-reconstructing hierarchical structures derived from ferrous carbonate as efficient bifunctional iron-based catalysts for oxygen and hydrogen evolution reactions. J. Mater. Chem. A. 2020, 8, 18367-75.
43. Liu, C.; Sheng, B.; Zhou, Q.; et al. Motivating Ru-bri site of RuO2 by boron doping toward high performance acidic and neutral oxygen evolution. Nano. Res. 2022, 15, 7008-15.
44. Jin, H.; Choi, S.; Bang, G. J.; et al. Safeguarding the RuO2 phase against lattice oxygen oxidation during acidic water electrooxidation. Energy. Environ. Sci. 2022, 15, 1119-30.
45. Zagalskaya, A.; Alexandrov, V. Role of defects in the interplay between adsorbate evolving and lattice oxygen mechanisms of the oxygen evolution reaction in RuO2 and IrO2. ACS. Catal. 2020, 10, 3650-7.
46. Fang, Y. H.; Liu, Z. P. Mechanism and Tafel lines of electro-oxidation of water to oxygen on RuO2(110). J. Am. Chem. Soc. 2010, 132, 18214-22.
47. Lu, T.; Chen, F. Multiwfn: a multifunctional wavefunction analyzer. J. Comput. Chem. 2012, 33, 580-92.