REFERENCES

1. Zhu, Z.; Jiang, T.; Ali, M.; et al. Rechargeable batteries for grid scale energy storage. Chem. Rev. 2022, 122, 16610-751.

2. Zhao, Y.; Saseendran, D. P. A.; Huang, C.; et al. Oxygen evolution/reduction reaction catalysts: from in situ monitoring and reaction mechanisms to rational design. Chem. Rev. 2023, 123, 6257-358.

3. Gao, X.; Chen, Y.; Wang, Y.; et al. Next-generation green hydrogen: progress and perspective from electricity, catalyst to electrolyte in electrocatalytic water splitting. Nano-Micro. Lett. 2024, 16, 237.

4. Zhang, H.; Yu, Y.; Yang, D.; et al. Multifunctional quasi-homogeneous catalysts as a new catalytic strategy to boost the performance of Li-O2 batteries. Adv. Mater. 2025, 37, 2413948.

5. Yang, B.; Liu, W.; Gu, T.; Wu, Z. Material design and catalyst-membrane electrode interface engineering for high-performance rechargeable zinc-air batteries. Energy. Storage. Mater. 2025, 74, 103985.

6. Chen, Y.; Wang, G.; Li, J.; et al. Recent advances in bifunctional carbon-based single-atom electrocatalysts for rechargeable zinc-air batteries. Green. Chem. 2025, 27, 293-324.

7. Wang, Q.; Kaushik, S.; Xiao, X.; Xu, Q. Sustainable zinc-air battery chemistry: advances, challenges and prospects. Chem. Soc. Rev. 2023, 52, 6139-90.

8. Lv, X. W.; Wang, Z.; Lai, Z.; et al. Rechargeable zinc-air batteries: advances, challenges, and prospects. Small 2024, 20, e2306396.

9. Yang, Z.; Chen, Y.; Zhang, S.; Zhang, J. Identification and understanding of active sites of non-noble iron-nitrogen-carbon catalysts for oxygen reduction electrocatalysis. Adv. Funct. Mater. 2023, 33, 2215185.

10. Liu, L.; Rao, X.; Zhang, S.; Zhang, J. Insight into synergy for oxygen reduction electrocatalysis of iron-nitrogen-carbon. Chem 2024, 10, 1994-2030.

11. Zhang, Z.; Liu, J.; Curcio, A.; et al. Atomically dispersed materials for rechargeable batteries. Nano. Energy. 2020, 76, 105085.

12. Li, L.; Tang, X.; Wu, B.; Huang, B.; Yuan, K.; Chen, Y. Advanced architectures of air electrodes in zinc-air batteries and hydrogen fuel cells. Adv. Mater. 2024, 36, 2308326.

13. Lei, H.; Ma, L.; Wan, Q.; et al. Porous carbon nanofibers confined NiFe alloy nanoparticles as efficient bifunctional electrocatalysts for Zn-air batteries. Nano. Energy. 2022, 104, 107941.

14. Chen, D.; Yu, R.; Yu, K.; et al. Bicontinuous RuO2 nanoreactors for acidic water oxidation. Nat. Commun. 2024, 15, 3928.

15. Yin, S.; Chen, L.; Yang, J.; et al. A Fe-NC electrocatalyst boosted by trace bromide ions with high performance in proton exchange membrane fuel cells. Nat. Commun. 2024, 15, 7489.

16. Zhan, Y.; Zhao, T.; Wu, X.; et al. Strengthening the oxygen reduction stability and activity of single iron active sites via a simultaneously electronic regulation and structure design strategy. Appl. Catal. B. Environ. Energy. 2024, 357, 124254.

17. Liu, J.; Gong, Z.; Allen, C.; et al. Edge-hosted Fe-N3 sites on a multiscale porous carbon framework combining high intrinsic activity with efficient mass transport for oxygen reduction. Chem. Catalysis. 2021, 1, 1291-307.

18. Yang, C.; Chen, J.; Yan, L.; Gao, Y.; Ning, J.; Hu, Y. Customizing oxygen electrocatalytic microenvironment with S, N codoped carbon nanofibers confining carbon nanocapsules and Co9S8 nanoparticles for rechargeable Zn-air batteries. Appl. Catal. B. Environ. Energy. 2024, 352, 124060.

19. Chen, K.; Liang, Y.; Pan, D.; et al. Mass transportation facilitated porous Fe/Co dual-site catalytic cathodes for ultrahigh-power-density Al-air fuel cells. Adv. Energy. Mater. 2025, 15, 2404140.

20. Zhai, W.; Li, J.; Tian, Y.; et al. Consolidating the oxygen reduction with sub-polarized graphitic Fe-N4 atomic sites for an efficient flexible zinc-air battery. Nano. Lett. 2024, 24, 14632-40.

21. Zhao, Y.; Zhu, L.; Tang, J.; et al. Enhancing electrocatalytic performance via thickness-tuned hollow N-doped mesoporous carbon with embedded Co nanoparticles for oxygen reduction reaction. ACS. Nano. 2024, 18, 373-82.

22. Li, J. K.; Zhao, H.; Zhang, Y.; et al. In situ electron tomography insights into the curvature effect of a concave surface on Fe single atoms for durable oxygen reaction. Adv. Sci. 2025, 12, 2412387.

23. Zhang, P.; Chen, H. C.; Zhu, H.; et al. Inter-site structural heterogeneity induction of single atom Fe catalysts for robust oxygen reduction. Nat. Commun. 2024, 15, 2062.

24. Zhai, X.; Qu, J.; Wang, J.; et al. Diffusion-driven fabrication of yolk-shell structured K-birnessite@mesoporous carbon nanospheres with rich oxygen vacancies for high-energy and high-power zinc-ion batteries. Energy. Storage. Mater. 2021, 42, 753-63.

25. Song, X.; Zhang, J.; Feng, X.; Qi, Y.; Cui, J.; Xiong, Y. CoFe2O4/CoFe loaded 3D ordered hierarchical porous N-doped carbon for efficient oxygen reduction in Zn-air battery and hydrogen evolution. J. Energy. Chem. 2025, 106, 220-30.

26. Zhang, W.; Li, H.; Feng, D.; et al. MOF-derived 1D/3D N-doped porous carbon for spatially confined electrochemical CO2 reduction to adjustable syngas. Carbon. Energy. 2024, 6, e461.

27. Wang, Y.; Sun, T.; Mostaghimi, A. H. B.; et al. Two-dimensional metal-organic frameworks with unique oriented layers for oxygen reduction reaction: tailoring the activity through exposed crystal facets. CCS. Chem. 2022, 4, 1633-42.

28. Chen, R.; Yao, J.; Gu, Q.; et al. A two-dimensional zeolitic imidazolate framework with a cushion-shaped cavity for CO2 adsorption. Chem. Commun. 2013, 49, 9500-2.

29. Wang, T.; Kou, Z.; Mu, S.; et al. 2D dual-metal zeolitic-imidazolate-framework-(ZIF)-derived bifunctional air electrodes with ultrahigh electrochemical properties for rechargeable zinc-air batteries. Adv. Funct. Mater. 2018, 28, 1705048.

30. Shen, J.; Aljarb, A.; Cai, Y.; et al. Engineering grain boundaries in monolayer molybdenum disulfide for efficient water-ion separation. Science 2025, 387, 776-82.

31. Qin, J.; Yang, Z.; Xing, F.; Zhang, L.; Zhang, H.; Wu, Z. Two-Dimensional mesoporous materials for energy storage and conversion: current status, chemical synthesis and challenging perspectives. Electrochem. Energy. Rev. 2023, 6, 9.

32. He, J.; Wang, W.; Yan, J.; et al. Stabilizing electron transport of 2D materials. Adv. Mater. 2025, 37, 2411941.

33. Zhao, B.; Luo, H.; Liu, J.; et al. S-doped carbonized wood fiber decorated with sulfide heterojunction-embedded S, N-doped carbon microleaf arrays for efficient high-current-density oxygen evolution. Chin. Chem. Lett. 2025, 36, 109919.

34. Fan, Y.; Wang, W.; Chen, Y.; et al. Cobalt-containing ZIF-derived catalysts for Zn-air batteries. Mater. Chem. Front. 2024, 8, 2394-419.

35. Guo, X.; Zhang, H.; Yao, Y.; et al. Stabilizing atomic Co on 2D ordered mesoporous carbon sandwiched MXene for peroxymonosulfate activation: Enhanced performance and electron-transfer mechanism. Appl. Catal. B. Environ. Energy. 2024, 358, 124432.

36. Ma, M.; Pei, Z.; Peng, Y.; et al. Single Zn atoms anchored in mesoporous N-doped carbon rods derived from metal-organic frameworks for enhanced electrocatalytic oxygen reduction reaction. J. Mater. Chem. A. 2025, 13, 7529-38.

37. Huang, Z.; Ma, D.; Nian, P.; et al. Coordinating interface polymerization with micelle mediated assembly towards two-dimensional mesoporous carbon/CoNi for advanced lithium-sulfur battery. Small 2023, 19, 2207411.

38. Dai, X.; Zhao, Z. ZIF-L-derived FeN-hcC catalysts with curved carbon surfaces for effective oxygen reduction reaction over the entire pH range. New. J. Chem. 2024, 48, 18719-27.

39. Xu, Y.; Hou, W.; Huang, K.; et al. Engineering built-in electric field microenvironment of CQDs/g-C3N4 heterojunction for efficient photocatalytic CO2 reduction. Adv. Sci. 2024, 11, 2403607.

40. Zhang, S.; Wu, J.; Zheng, M.; et al. Fe/Cu diatomic catalysts for electrochemical nitrate reduction to ammonia. Nat. Commun. 2023, 14, 3634.

41. He, J.; Li, N.; Li, Z.; et al. Strategic defect engineering of metal-organic frameworks for optimizing the fabrication of single-atom catalysts. Adv. Funct. Mater. 2021, 31, 2103597.

42. Li, W.; Chen, L.; Qiu, M.; et al. Highly efficient epoxidation of propylene with in situ -generated H2O2 over a hierarchical TS-1 zeolite-supported non-noble nickel catalyst. ACS. Catal. 2023, 13, 10487-99.

43. Fan, X. Z.; Du, X.; Pang, Q. Q.; Zhang, S.; Liu, Z. Y.; Yue, X. Z. In situ construction of bifunctional N-doped carbon-anchored Co nanoparticles for OER and ORR. ACS. Appl. Mater. Interfaces. 2022, 14, 8549-56.

44. Chen, Z.; Xu, W.; Wang, W.; et al. Bamboo-like carbon nanotube-encapsulated Fe2C nanoparticles activate confined Fe2O3 nanoclusters via d-p-d orbital coupling for alkaline oxygen evolution reaction. Small 2025, 21, 2409325.

45. Tang, X.; Wei, Y.; Zhai, W.; et al. Carbon nanocage with maximum utilization of atomically dispersed iron as efficient oxygen electroreduction nanoreactor. Adv. Mater. 2023, 35, 2208942.

46. Lyu, L.; Hu, X.; Lee, S.; et al. Oxygen reduction kinetics of Fe-N-C single atom catalysts boosted by pyridinic N vacancy for temperature-adaptive Zn-air batteries. J. Am. Chem. Soc. 2024, 146, 4803-13.

47. Zhu, Y.; Jiang, Y.; Li, H.; et al. Tip-like Fe-N4 sites induced surface microenvironments regulation boosts the oxygen reduction reaction. Angew. Chem. Int. Ed. 2024, 63, e202319370.

48. Wang, Y.; Yang, T.; Fan, X.; et al. Anchoring Fe species on the highly curved surface of S and N Co-doped carbonaceous nanosprings for oxygen electrocatalysis and a flexible zinc-air battery. Angew. Chem. Int. Ed. 2024, 63, e202313034.

49. Sang, W.; Chaemchuen, S.; Zhang, L.; et al. Solid-state stepwise temperature-programmable synthesis of bioinspired Fe-N-C oxygen reduction electrocatalyst featuring Fe-N5 configuration. Nano. Res. 2025, 18, 94907245.

50. Bae, G.; Kwon, H. C.; Han, M. H.; Oh, H.; Jaouen, F.; Choi, C. H. Single-site-level deciphering of the complexity of electrochemical oxygen reduction on Fe-N-C catalysts. ACS. Catal. 2024, 14, 8184-92.

51. Jia, C.; Zhao, Y.; Song, S.; et al. Highly ordered hierarchical porous single-atom Fe catalyst with promoted mass transfer for efficient electroreduction of CO2. Adv. Energy. Mater. 2023, 13, 2302007.

52. Liu, S.; Meyer, Q.; Jia, C.; et al. Operando deconvolution of the degradation mechanisms of iron-nitrogen-carbon catalysts in proton exchange membrane fuel cells. Energy. Environ. Sci. 2023, 16, 3792-802.

53. Liu, Y.; Li, J.; Lv, Z.; et al. Efficient proton-exchange membrane fuel cell performance of atomic Fe sites via p-d hybridization with Al dopants. J. Am. Chem. Soc. 2024, 146, 12636-44.

54. Wang, X.; Zhang, J.; Wang, P.; et al. Terbium-induced cobalt valence-band narrowing boosts electrocatalytic oxygen reduction. Energy. Environ. Sci. 2023, 16, 5500-12.

55. Li, J.; Zhu, Y.; Chen, W.; et al. Breathing-mimicking electrocatalysis for oxygen evolution and reduction. Joule 2019, 3, 557-69.

56. Jiang, S.; Xiang, Q.; Xie, Z.; et al. Influence of the Pt/ionomer/water interface on the oxygen reduction reaction: insights into the micro-three-phase interface. Chem. Sci. 2024, 15, 19290-8.

57. Yan, L.; Xie, B.; Yang, C.; et al. Engineering self-supported hydrophobic-aerophilic air cathode with CoS/Fe3S4 nanoparticles embedded in S, N Co-doped carbon plate arrays for long-life rechargeable Zn-air batteries. Adv. Energy. Mater. 2023, 13, 2204245.

58. Zhao, Y.; Shi, Z.; Li, F.; et al. Deciphering mesopore-augmented CO2 electroreduction over atomically dispersed Fe-N-doped carbon catalysts. ACS. Catal. 2024, 14, 3926-32.

59. Wu, J.; Zhu, Y.; Cai, A.; Fan, X.; Peng, W.; Li, Y. Structural engineering of Fe single-atom oxygen reduction catalyst with high site density and improved mass transfer. J. Energy. Chem. 2024, 98, 634-44.

60. Li, S.; Peng, X.; Wang, C.; Zhao, X.; Dang, J.; Li, J. Confinement effects boosted oxygen reduction reactions inside FeN4-decorated carbon nanotubes. Chem. Catal. 2024, 4, 101059.

Energy Materials
ISSN 2770-5900 (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/