REFERENCES
1. Friedman, P.; Murgatroyd, F.; Boersma, L. V. A.; et al. Efficacy and safety of an extravascular implantable cardioverter-defibrillator. N. Engl. J. Med. 2022, 387, 1292-302.
2. Bai, C.; Li, S.; Ji, K.; Wang, M.; Kong, D. Stretchable microbatteries and microsupercapacitors for next-generation wearable electronics. Energy. Mater. 2023, 3, 300041.
3. Buchman, C. A.; Gifford, R. H.; Haynes, D. S.; et al. Unilateral cochlear implants for severe, profound, or moderate sloping to profound bilateral sensorineural hearing loss: a systematic review and consensus statements. JAMA. Otolaryngol. Head. Neck. Surg. 2020, 146, 942-53.
4. McGlynn, E.; Nabaei, V.; Ren, E.; et al. The future of neuroscience: flexible and wireless implantable neural electronics. Adv. Sci. 2021, 8, 2002693.
5. Yan, B.; Zhao, Y.; Peng, H. Tissue-matchable and implantable batteries toward biomedical applications. Small. Methods. 2023, 7, e2300501.
6. Zhao, T.; Traversy, M.; Choi, Y.; Ghahreman, A. A novel process for multi-stage continuous selective leaching of lithium from industrial-grade complicated lithium-ion battery waste. Sci. Total. Environ. 2024, 909, 168533.
7. Kim, Y.; Stepien, D.; Moon, H.; et al. Artificial interphase design employing inorganic-organic components for high-energy lithium-metal batteries. ACS. Appl. Mater. Interfaces. 2023, 15, 20987-97.
8. Wang, S.; Cui, Q.; Abiri, P.; et al. A self-assembled implantable microtubular pacemaker for wireless cardiac electrotherapy. Sci. Adv. 2023, 9, eadj0540.
9. Ahn, S. H.; Koh, C. S.; Park, M.; et al. Liquid crystal polymer-based miniaturized fully implantable deep brain stimulator. Polymers 2023, 15, 4439.
10. Lv, Q.; Chen, S.; Luo, D.; et al. An implantable and degradable silk sericin protein film energy harvester for next-generation cardiovascular electronic devices. Adv. Mater. 2025, 37, e2413610.
11. Choi, Y. S.; Yin, R. T.; Pfenniger, A.; et al. Fully implantable and bioresorbable cardiac pacemakers without leads or batteries. Nat. Biotechnol. 2021, 39, 1228-38.
12. Basha, S. I.; Shah, S. S.; Ahmad, S.; Maslehuddin, M.; Al-Zahrani, M. M.; Aziz, M. A. Construction building materials as a potential for structural supercapacitor applications. Chem. Rec. 2022, 22, e202200134.
13. Kabir, M. H.; Marquez, E.; Djokoto, G.; et al. Energy harvesting by mesoporous reduced graphene oxide enhanced the mediator-free glucose-powered enzymatic biofuel cell for biomedical applications. ACS. Appl. Mater. Interfaces. 2022, 14, 24229-44.
14. Lv, Q.; Ma, X.; Zhang, C.; et al. Nanocellulose-based nanogenerators for sensor applications: a review. Int. J. Biol. Macromol. 2024, 259, 129268.
15. Bronner, H.; Doll-Nikutta, K.; Donath, S.; et al. A versatile two-light mode triggered system for highly localized sequential release of reactive oxygen species and conjugated drugs from mesoporous organosilica particles. J. Mater. Chem. B. 2025, 13, 3032-8.
16. Wang, H.; Zhu, C.; Jin, W.; et al. A linear-power-regulated wireless power transfer method for decreasing the heat dissipation of fully implantable microsystems. Sensors 2022, 22, 8765.
17. Imani, I. M.; Kim, H. S.; Shin, J.; et al. Advanced ultrasound energy transfer technologies using metamaterial structures. Adv. Sci. 2024, 11, e2401494.
18. Long, H.; Qian, Y.; Gang, S.; et al. High-performance thermoelectric composite of Bi2Te3 nanosheets and carbon aerogel for harvesting of environmental electromagnetic energy. ACS. Nano. 2025, 19, 1819-31.
19. Wang, W.; Liu, Z.; Zhu, Z.; et al. Electrochemical lithium recycling from spent batteries with electricity generation. Nat. Sustain. 2025, 8, 287-96.
20. Innocenti, A.; Bresser, D.; Garche, J.; Passerini, S. A critical discussion of the current availability of lithium and zinc for use in batteries. Nat. Commun. 2024, 15, 4068.
21. Tran, H. A.; Hoang, T. T.; Maraldo, A.; et al. Emerging silk fibroin materials and their applications: new functionality arising from innovations in silk crosslinking. Mater. Today. 2023, 65, 244-59.
22. Barri, K.; Zhang, Q.; Swink, I.; et al. Patient-specific self-powered metamaterial implants for detecting bone healing progress. Adv. Funct. Mater. 2022, 32, 2203533.
23. Zhou, X.; Wang, Y.; Ji, J.; Zhang, P. Materials strategies to overcome the foreign body response. Adv. Healthc. Mater. 2024, 13, e2304478.
24. Zhou, X.; Hao, H.; Chen, Y.; et al. Covalently grafted human serum albumin coating mitigates the foreign body response against silicone implants in mice. Bioact. Mater. 2024, 34, 482-93.
25. Kim, K.; Min, I. S.; Kim, T. H.; et al. Fully implantable and battery-free wireless optoelectronic system for modulable cancer therapy and real-time monitoring. NPJ. Flex. Electron. 2023, 7, 276.
26. Maduka, C. V.; Schmitter-Sánchez, A. D.; Makela, A. V.; et al. Immunometabolic cues recompose and reprogram the microenvironment around implanted biomaterials. Nat. Biomed. Eng. 2024, 8, 1308-21.
27. Maduka, C. V.; Alhaj, M.; Ural, E.; et al. Polylactide degradation activates immune cells by metabolic reprogramming. Adv. Sci. 2023, 10, e2304632.
28. Wu, Z.; Yi, Y.; Hai, F.; et al. A metal-organic framework based quasi-solid-state electrolyte enabling continuous ion transport for high-safety and high-energy-density lithium metal batteries. ACS. Appl. Mater. Interfaces. 2023, 15, 22065-74.
29. Cai, G.; Chen, A. A.; Lin, S.; et al. Unravelling ultrafast Li ion transport in functionalized metal-organic framework-based battery electrolytes. Nano. Lett. 2023, 23, 7062-9.
30. Raza, A.; Wu, W. Metal-organic frameworks in oral drug delivery. Asian. J. Pharm. Sci. 2024, 19, 100951.
31. Yang, S. Y.; Sencadas, V.; You, S. S.; et al. Powering implantable and ingestible electronics. Adv. Funct. Mater. 2021, 31, 2009289.
32. Wang, J.; Chu, J.; Song, J.; Li, Z. The application of impantable sensors in the musculoskeletal system: a review. Front. Bioeng. Biotechnol. 2024, 12, 1270237.
33. Xiao, B.; Cao, F.; Ying, T.; et al. Achieving ultrahigh anodic efficiency via single-phase design of Mg-Zn alloy anode for Mg-air batteries. ACS. Appl. Mater. Interfaces. 2021, 13, 58737-45.
34. Bhaduri, A.; Ha, T. J. Biowaste-derived triboelectric nanogenerators for emerging bioelectronics. Adv. Sci. 2024, 11, e2405666.
35. Lai, Y.; Xie, H.; Li, P.; et al. Ion-migration mechanism: an overall understanding of anionic redox activity in metal oxide cathodes of Li/Na-ion batteries. Adv. Mater. 2022, 34, e2206039.
36. Feng, K.; Li, M.; Liu, W.; et al. Silicon-based anodes for lithium-ion batteries: from fundamentals to practical applications. Small 2018, 14, 1702737.
37. Heubner, C.; Langklotz, U.; Michaelis, A. Theoretical optimization of electrode design parameters of Si based anodes for lithium-ion batteries. J. Energy. Storage. 2018, 15, 181-90.
38. Dou, Y.; Guo, J.; Shao, J.; et al. Bi-functional materials for sulfur cathode and lithium metal anode of lithium-sulfur batteries: status and challenges. Adv. Sci. 2024, 11, e2407304.
39. Wang, T.; Li, Y.; Zhang, J.; et al. Immunizing lithium metal anodes against dendrite growth using protein molecules to achieve high energy batteries. Nat. Commun. 2020, 11, 5429.
40. Xu, T.; Huang, S.; Min, Y.; Xu, Q. Gelatin network reinforced poly (vinylene carbonate-acrylonitrile) based composite solid electrolyte for all-solid-state lithium metal batteries. Chem. Eng. J. 2023, 475, 146409.
41. Paz-González, J. A.; Gochi-Ponce, Y.; Velasco-Santos, C.; et al. Enhancing polylactic acid/carbon fiber-reinforced biomedical composites (PLA/CFRCs) with multi-walled carbon nanotube (MWCNT) fillers: a comparative study on reinforcing techniques. J. Compos. Sci. 2025, 9, 167.
42. Li, L.; Li, D.; Wang, Y.; et al. Implantable zinc-oxygen battery for in situ electrical stimulation-promoted neural regeneration. Adv. Mater. 2023, 35, e2302997.
43. Lv, Y.; Liu, X.; Liu, J.; et al. Implantable and bio-compatible Na-O2 battery. Chem 2024, 10, 1885-96.
44. Yao, G.; Kang, L.; Li, C.; et al. A self-powered implantable and bioresorbable electrostimulation device for biofeedback bone fracture healing. Proc. Natl. Acad. Sci. USA. 2021, 118, e2100772118.
45. Li, Y.; Liu, T.; Liu, Y.; Meng, F.; Cao, Z. Dual storage mechanism of charge adsorption desorption and Faraday redox reaction enables aqueous symmetric supercapacitor with 1.4 V output voltage. Chem. Eng. J. 2024, 479, 147906.
46. Worsley, E. A.; Margadonna, S.; Bertoncello, P. Application of graphene nanoplatelets in supercapacitor devices: a review of recent developments. Nanomaterials 2022, 12, 3600.
47. Chernysheva, D. V.; Smirnova, N. V.; Ananikov, V. P. Recent trends in supercapacitor research: sustainability in energy and materials. ChemSusChem 2024, 17, e202301367.
48. Gopi CVV, Alzahmi S, Narayanaswamy V, Raghavendra KVG, Issa B, Obaidat IM. A review on electrode materials of supercapacitors used in wearable bioelectronics and implantable biomedical applications. Mater. Horiz. 2025, 12, 4092-132.
49. Portenkirchner, E. Substantial Na-ion storage at high current rates: redox-pseudocapacitance through sodium oxide formation. Nanomaterials 2022, 12, 4264.
50. Khan B, Haider F, Zhang T, Zahra S. Advances in graphene-transition metal selenides hybrid materials for high-performance supercapacitors: a review. Chem. Rec. 2025, 25, e202500037.
51. Wang, X.; Yu, M.; Kamal, Hadi. M.; et al. An anticoagulant supercapacitor for implantable applications. Nat. Commun. 2024, 15, 10497.
52. Zhu, Z.; Liu, Z.; Yin, Y.; et al. Production of a hybrid capacitive storage device via hydrogen gas and carbon electrodes coupling. Nat. Commun. 2022, 13, 2805.
53. Xie, P.; Zhang, Y.; Man, Z.; et al. Wearable, recoverable, and implantable energy storage devices with heterostructure porous COF-5/Ti3C2Tx cathode for high-performance aqueous Zn-ion hybrid capacitor. Adv. Funct. Mater. 2025, 35, 2421517.
54. Jing, L.; Zhuo, K.; Sun, L.; et al. The mass-balancing between positive and negative electrodes for optimizing energy density of supercapacitors. J. Am. Chem. Soc. 2024, 146, 14369-85.
55. Shao, M.; Sheng, H.; Lin, L.; et al. High-performance biodegradable energy storage devices enabled by heterostructured MoO3-MoS2 composites. Small 2023, 19, e2205529.
56. Gloeb-McDonald, R. G.; Fridman, G. Y. Glucose fuel cells: electricity from blood sugar. IEEE. Rev. Biomed. Eng. 2025, 18, 268-80.
57. Ge, J.; Mao, W.; Wang, X.; Zhang, M.; Liu, S. The fluorescent detection of glucose and lactic acid based on fluorescent iron nanoclusters. Sensors 2024, 24, 3447.
58. Maity, D.; Guha, Ray. P.; Buchmann, P.; Mansouri, M.; Fussenegger, M. Blood-glucose-powered metabolic fuel cell for self-sufficient bioelectronics. Adv. Mater. 2023, 35, e2300890.
59. Zhang, X.; Wang, Z.; Jiang, H.; et al. Self-powered enzyme-linked microneedle patch for scar-prevention healing of diabetic wounds. Sci. Adv. 2023, 9, eadh1415.
60. Rui, X.; Hua, R.; Ren, D.; et al. In situ polymerization facilitating practical high-safety quasi-solid-state batteries. Adv. Mater. 2024, 36, e2402401.
61. Huddleston, M.; Sun, Y. Biomass valorization via paired electrocatalysis. ChemSusChem 2025, 18, e202402161.
62. Song, Y.; Wang, C. High-power biofuel cells based on three-dimensional reduced graphene oxide/carbon nanotube micro-arrays. Microsyst. Nanoeng. 2019, 5, 46.
63. Buaki-Sogó, M.; García-Carmona, L.; Gil-Agustí, M.; Zubizarreta, L.; García-Pellicer, M.; Quijano-López, A. Enzymatic glucose-based bio-batteries: bioenergy to fuel next-generation devices. Top. Curr. Chem. 2020, 378, 49.
64. Wang, Y.; Tong, H.; Ni, S.; et al. Combining hard shell with soft core to enhance enzyme activity and resist external disturbances. Adv. Sci. 2025, 12, e2411196.
65. Welsh, C. L.; Madan, L. K. Chapter Two - Protein tyrosine phosphatase regulation by reactive oxygen species. Adv. Cancer. Res. 2024, 162, 74.
66. Feliciano, A. J.; Soares, E.; Bosman, A. W.; et al. Complementary supramolecular functionalization enhances antifouling surfaces: a ureidopyrimidinone-functionalized phosphorylcholine polymer. ACS. Biomater. Sci. Eng. 2023, 9, 4619-31.
67. Xie, W. J.; Warshel, A. Harnessing generative AI to decode enzyme catalysis and evolution for enhanced engineering. Natl. Sci. Rev. 2023, 10, nwad331.
68. Chen, N.; Chang, B.; Shi, N.; Yan, W.; Lu, F.; Liu, F. Cross-linked enzyme aggregates immobilization: preparation, characterization, and applications. Crit. Rev. Biotechnol. 2023, 43, 369-83.
69. Zhang, M.; Wang, X.; Liu, W.; et al. Engineering a binding peptide for oriented immobilization and efficient bioelectrocatalytic oxygen reduction of multicopper oxidases. ACS. Appl. Mater. Interfaces. 2025, 17, 2355-64.
70. Cao, L.; Chen, J.; Pang, J.; Qu, H.; Liu, J.; Gao, J. Research progress in enzyme biofuel cells modified using nanomaterials and their implementation as self-powered sensors. Molecules 2024, 29, 257.
71. Khan, M.; Inamuddin,
72. Zhang, Y.; Selvarajan, V.; Shi, K.; Kim, C. J. Fabrication and characterization of glucose-oxidase-trehalase electrode based on nanomaterial-coated carbon paper. RSC. Adv. 2023, 13, 33918-28.
73. Maiti, T. K.; Liu, W.; Niyazi, A.; Squires, A. M.; Chattpoadhyay, S.; Di, Lorenzo. M. Soft-template-based manufacturing of gold nanostructures for energy and sensing applications. Biosensors 2024, 14, 289.
74. Ji, K.; Liang, Z.; Wang, P.; Li, Z.; Ma, Q.; Su, X. Mxene-based capacitive enzyme-free biofuel cell self-powered sensor for lead ion detection in human plasma. Chem. Eng. J. 2024, 495, 153598.
75. Wang, X.; Han, F.; Xiao, Z.; et al. 3-D printable living hydrogels as portable bio-energy devices (Adv. Mater. 18/2025). Adv. Mater. 2025, 37, 2570134.
76. Sode, K.; Yamazaki, T.; Lee, I.; Hanashi, T.; Tsugawa, W. BioCapacitor: a novel principle for biosensors. Biosens. Bioelectron. 2016, 76, 20-8.
77. Upadhyay, V.; Boorla, V. S.; Maranas, C. D. Rank-ordering of known enzymes as starting points for re-engineering novel substrate activity using a convolutional neural network. Metab. Eng. 2023, 78, 171-82.
78. Liu, G.; Fan, B.; Qi, Y.; et al. Ultrahigh-current-density tribovoltaic nanogenerators based on hydrogen bond-activated flexible organic semiconductor textiles. ACS. Nano. 2025, 19, 6771-83.
79. Cui, X.; Wu, L.; Zhang, C.; Li, Z. Implantable self-powered systems for electrical stimulation medical devices. Adv. Sci. 2025, 12, e2412044.
80. Fan, N.; Wang, Y.; Liu, B.; Yang, H.; Liu, S. Origin and mechanism of piezoelectric and photovoltaic effects in (111) polar orientated NiO films. Adv. Sci. 2023, 10, e2304637.
81. Park, D. S.; Hadad, M.; Riemer, L. M.; et al. Induced giant piezoelectricity in centrosymmetric oxides. Science 2022, 375, 653-7.
82. Xiang, H.; Peng, L.; Yang, Q.; Wang, Z. L.; Cao, X. Triboelectric nanogenerator for high-entropy energy, self-powered sensors, and popular education. Sci. Adv. 2024, 10, eads2291.
83. Xiang, Z.; Li, L.; Lu, Z.; et al. High-performance microcone-array flexible piezoelectric acoustic sensor based on multicomponent lead-free perovskite rods. Matter 2023, 6, 554-69.
84. Liu, Z.; Hu, Y.; Qu, X.; et al. A self-powered intracardiac pacemaker in swine model. Nat. Commun. 2024, 15, 507.
85. Jała, J.; Nowacki, B.; Toroń, B. Piezotronic antimony sulphoiodide/polyvinylidene composite for strain-sensing and energy-harvesting applications. Sensors 2023, 23, 7855.
86. Chen, Q.; Cao, Y.; Lu, Y.; et al. Hybrid piezoelectric/triboelectric wearable nanogenerator based on stretchable PVDF-PDMS composite films. ACS. Appl. Mater. Interfaces. 2024, 16, 6239-49.
87. Yang, F.; Li, J.; Long, Y.; et al. Wafer-scale heterostructured piezoelectric bio-organic thin films. Science 2021, 373, 337-42.
88. Cheng, Y.; Xu, J.; Li, L.; et al. Boosting the piezoelectric sensitivity of amino acid crystals by mechanical annealing for the engineering of fully degradable force sensors. Adv. Sci. 2023, 10, e2207269.
89. Sun, Q.; Liang, F.; Ren, G.; et al. Density-of-states matching-induced ultrahigh current density and high-humidity resistance in a simply structured triboelectric nanogenerator. Adv. Mater. 2023, 35, e2210915.
90. Liu, Q.; Xue, Y.; He, J.; et al. Highly moisture-resistant flexible thin-film-based triboelectric nanogenerator for environmental energy harvesting and self-powered tactile sensing. ACS. Appl. Mater. Interfaces. 2024, 16, 38269-82.
91. Ding, D.; Wu, Q.; Li, Q.; et al. Novel thermoelectric fabric structure with switched thermal gradient direction toward wearable in-plane thermoelectric generators. Small 2024, 20, e2306830.
92. Liu, J. Z.; Jiang, W.; Zhuo, S.; et al. Large-area radiation-modulated thermoelectric fabrics for high-performance thermal management and electricity generation. Sci. Adv. 2025, 11, eadr2158.
93. Yang, S.; Li, Y.; Deng, L.; et al. Flexible thermoelectric generator and energy management electronics powered by body heat. Microsyst. Nanoeng. 2023, 9, 106.
94. Li, X.; Li, R.; Li, S.; Wang, Z. L.; Wei, D. Triboiontronics with temporal control of electrical double layer formation. Nat. Commun. 2024, 15, 6182.
95. Yan, R.; Zhang, X.; Wang, H.; et al. Autonomous, moisture-driven flexible electrogenerative dressing for enhanced wound healing. Adv. Mater. 2025, 37, e2418074.
96. Rayegani, A.; Saberian, M.; Delshad, Z.; et al. Recent advances in self-powered wearable sensors based on piezoelectric and triboelectric nanogenerators. Biosensors 2022, 13, 37.
97. Delgado-Alvarado, E.; Martínez-Castillo, J.; Zamora-Peredo, L.; et al. Triboelectric and piezoelectric nanogenerators for self-powered healthcare monitoring devices: operating principles, challenges, and perspectives. Nanomaterials 2022, 12, 4403.
98. Omi, A. I.; Jiang, A.; Chatterjee, B. Efficient inductive link design: a systematic method for optimum biomedical wireless power transfer in area-constrained implants. IEEE. Trans. Biomed. Circuits. Syst. 2025, 19, 300-16.
99. Sheng, H.; Jiang, L.; Wang, Q.; et al. A soft implantable energy supply system that integrates wireless charging and biodegradable Zn-ion hybrid supercapacitors. Sci. Adv. 2023, 9, eadh8083.
100. Yu, Z.; Chen, J. C.; Alrashdan, F. T.; et al. MagNI: a magnetoelectrically powered and controlled wireless neurostimulating implant. IEEE. Trans. Biomed. Circuits. Syst. 2020, 14, 1244-55.
101. Ullah, M. A.; Keshavarz, R.; Abolhasan, M.; Lipman, J.; Esselle, K. P.; Shariati, N. A review on antenna technologies for ambient RF energy harvesting and wireless power transfer: designs, challenges and applications. IEEE. Access. 2022, 10, 17231-67.
102. Abdolrazzaghi, M.; Genov, R.; Eleftheriades, G. V. Subwavelength-scale focused wireless powering of implantable medical devices by superoscillations. IEEE. Trans. Microw. Theory. Technol. 2025, 73, 2101-10.
103. Hinchet, R.; Yoon, H. J.; Ryu, H.; et al. Transcutaneous ultrasound energy harvesting using capacitive triboelectric technology. Science 2019, 365, 491-4.
104. Zhu, K.; Ma, J.; Qi, X.; et al. Enhancement of ultrasonic transducer bandwidth by acoustic impedance gradient matching layer. Sensors 2022, 22, 8025.
105. Hou, J. F.; Nayeem, M. O. G.; Caplan, K. A.; et al. An implantable piezoelectric ultrasound stimulator (ImPULS) for deep brain activation. Nat. Commun. 2024, 15, 4601.
106. Imani, I. M.; Kim, H. S.; Lee, M.; et al. A body conformal ultrasound receiver for efficient and stable wireless power transfer in deep percutaneous charging. Adv. Mater. 2025, 37, e2419264.
107. Ai, L.; Lin, W.; Cao, C.; et al. Tough soldering for stretchable electronics by small-molecule modulated interfacial assemblies. Nat. Commun. 2023, 14, 7723.
108. Hu, H.; Zhang, C.; Ding, Y.; Chen, F.; Huang, Q.; Zheng, Z. A review of structure engineering of strain-tolerant architectures for stretchable electronics. Small. Methods. 2023, 7, e2300671.
109. Simone, G.; Di, Carlo. Rasi. D.; de, Vries. X.; et al. Near-infrared tandem organic photodiodes for future application in artificial retinal implants. Adv. Mater. 2018, 30, e1804678.
110. Zhang, Y.; Rytkin, E.; Zeng, L.; et al. Millimetre-scale bioresorbable optoelectronic systems for electrotherapy. Nature 2025, 640, 77-86.
111. Cong, J.; Wu, J.; Fang, Y.; et al. Application of organoid technology in the human health risk assessment of microplastics: a review of progresses and challenges. Environ. Int. 2024, 188, 108744.






