REFERENCES

1. Lim, K. H.; Yue, Y.; Bella, .; et al. Sustainable hydrogen and ammonia technologies with nonthermal plasma catalysis: mechanistic insights and technoeconomic analysis. ACS. Sustain. Chem. Eng. 2023, 11, 4903-33.

2. Julkapli, N. M.; Bagheri, S. Graphene supported heterogeneous catalysts: an overview. Int. J. Hydrogen. Energy. 2015, 40, 948-79.

3. Liu, X.; Dai, L. Carbon-based metal-free catalysts. Nat. Rev. Mater. 2016, 1, 201664.

4. Lee, J.; Farha, O. K.; Roberts, J.; Scheidt, K. A.; Nguyen, S. T.; Hupp, J. T. Metal-organic framework materials as catalysts. Chem. Soc. Rev. 2009, 38, 1450-9.

5. Jiao, L.; Wang, Y.; Jiang, H. L.; Xu, Q. Metal-organic frameworks as platforms for catalytic applications. Adv. Mater. 2018, 30, e1703663.

6. Wang, Q.; Astruc, D. State of the art and prospects in metal-organic framework (MOF)-based and MOF-derived nanocatalysis. Chem. Rev. 2020, 120, 1438-511.

7. Santos, V. P.; Wezendonk, T. A.; Jaén, J. J.; et al. Metal organic framework-mediated synthesis of highly active and stable Fischer-Tropsch catalysts. Nat. Commun. 2015, 6, 6451.

8. Frei, M. S.; Mondelli, C.; García-Muelas, R.; et al. Atomic-scale engineering of indium oxide promotion by palladium for methanol production via CO2 hydrogenation. Nat. Commun. 2019, 10, 3377.

9. Wang, J.; Li, W. C.; Sun, D. H.; He, L.; Zhou, B. C.; Lu, A. H. High-selective upgrading of ethanol to C4-10 alcohols over hydroxyapatite catalyst with superior basicity. ACS. Sustain. Chem. Eng. 2025, 13, 36-45.

10. Tsuchida, T.; Sakuma, S.; Takeguchi, T.; Ueda, W. Direct synthesis of n-butanol from ethanol over nonstoichiometric hydroxyapatite. Ind. Eng. Chem. Res. 2006, 45, 8634-42.

11. Qi, H.; Li, Y.; Zhou, Z.; et al. Synthesis of piperidines and pyridine from furfural over a surface single-atom alloy Ru1CoNP catalyst. Nat. Commun. 2023, 14, 6329.

12. Ibrahim, M.; Labaki, M.; Giraudon, J. M.; Lamonier, J. F. Hydroxyapatite, a multifunctional material for air, water and soil pollution control: a review. J. Hazard. Mater. 2020, 383, 121139.

13. Kaneda, K.; Mizugaki, T. Development of concerto metal catalysts using apatite compounds for green organic syntheses. Energy. Environ. Sci. 2009, 2, 655.

14. Fihri, A.; Len, C.; Varma, R. S.; Solhy, A. Hydroxyapatite: a review of syntheses, structure and applications in heterogeneous catalysis. Coordin. Chem. Rev. 2017, 347, 48-76.

15. Sadat-Shojai, M.; Khorasani, M. T.; Dinpanah-Khoshdargi, E.; Jamshidi, A. Synthesis methods for nanosized hydroxyapatite with diverse structures. Acta. Biomater. 2013, 9, 7591-621.

16. Pham Minh, D. Introduction to hydroxyapatite-based materials in heterogeneous catalysis; 2022; pp. 1-18.

17. Mostafa, N. Y.; Brown, P. W. Computer simulation of stoichiometric hydroxyapatite: structure and substitutions. J. Phys. Chem. Solids. 2007, 68, 431-7.

18. Ammar, M.; Ashraf, S.; Baltrusaitis, J. Nutrient-doped hydroxyapatite: structure, synthesis and properties. Ceramics 2023, 6, 1799-825.

19. Tsuchida, T.; Kubo, J.; Yoshioka, T.; Sakuma, S.; Takeguchi, T.; Ueda, W. Reaction of ethanol over hydroxyapatite affected by Ca/P ratio of catalyst. J. Catal. 2008, 259, 183-9.

20. Bailliez, S.; Nzihou, A.; Bèche, E.; Flamant, G. Removal of lead (Pb) by hydroxyapatite sorbent. Process. Saf. Environ. Prot. 2004, 82, 175-80.

21. Pizzala, H.; Caldarelli, S.; Eon, J. G.; et al. A solid-state NMR study of lead and vanadium substitution into hydroxyapatite. J. Am. Chem. Soc. 2009, 131, 5145-52.

22. Robles-Águila, M.; Reyes-Avendaño, J.; Mendoza, M. Structural analysis of metal-doped (Mn, Fe, Co, Ni, Cu, Zn) calcium hydroxyapatite synthetized by a sol-gel microwave-assisted method. Ceram. Int. 2017, 43, 12705-9.

23. Takahashi, H.; Yashima, M.; Kakihana, M.; Yoshimura, M. A differential scanning calorimeter study of the monoclinic (P21/b)↔hexagonal (P63/m) reversible phase transition in hydroxyapatite. Thermochim. Acta. 2001, 371, 53-6.

24. Ma, G.; Liu, X. Y. Hydroxyapatite: hexagonal or monoclinic? Cryst. Growth. Des. 2009, 9, 2991-4.

25. Van Rees, H. B.; Mengeot, M.; Kostiner, E. Monoclinic-hexagonal transition in hydroxyapatite and deuterohydroxyapatite single crystals. Mater. Res. Bull. 1973, 8, 1307-9.

26. Li, W.; Zhang, G.; Jiang, X.; et al. CO2 hydrogenation on unpromoted and M-promoted Co/TiO2 catalysts (M = Zr, K, Cs): effects of crystal phase of supports and metal-support interaction on tuning product distribution. ACS. Catal. 2019, 9, 2739-51.

27. Jiang, F.; Wang, S.; Liu, B.; et al. Insights into the influence of CeO2 crystal facet on CO2 hydrogenation to methanol over Pd/CeO2 catalysts. ACS. Catal. 2020, 10, 11493-509.

28. Zhao, Z.; Jiang, Q.; Wang, Q.; et al. Effect of rutile content on the catalytic performance of Ru/TiO2 catalyst for low-temperature CO2 methanation. ACS. Sustain. Chem. Eng. 2021, 9, 14288-96.

29. Moteki, T.; Flaherty, D. W. Mechanistic insight to C-C bond formation and predictive models for cascade reactions among alcohols on Ca- and Sr-hydroxyapatites. ACS. Catal. 2016, 6, 4170-83.

30. Bett, J. A. S.; Christner, L. G.; Hall, W. K. Hydrogen held by solids. XII. Hydroxyapatite catalysts. J. Am. Chem. Soc. 1967, 89, 5535-41.

31. Wang, Y. B.; He, L.; Zhou, B. C.; et al. Hydroxyapatite nanorods rich in [Ca-O-P] sites stabilized Ni species for methane dry reforming. Ind. Eng. Chem. Res. 2021, 60, 15064-73.

32. Lin, T.; Liu, C.; Gangarajula, Y.; et al. Strong metal-support interaction induced sintering-resistant Ni nanoparticles supported on highly CO2-activating vanadium hydroxyapatite for dry reforming of methane. Appl. Cata. A. Gen. 2023, 662, 119290.

33. Ferri, M.; Campisi, S.; Scavini, M.; Evangelisti, C.; Carniti, P.; Gervasini, A. In-depth study of the mechanism of heavy metal trapping on the surface of hydroxyapatite. Appl. Surf. Sci. 2019, 475, 397-409.

34. Jemli, Y. E. L.; Abdelouahdi, K.; Minh, D. P.; Barakat, A.; Solhy, A. Synthesis and characterization of hydroxyapatite and hydroxyapatite-based catalysts. In: Pham Minh D, editor. Design and applications of hydroxyapatite-based catalysts. Wiley; 2022. pp. 19-72.

35. Smiciklas, I.; Onjia, A.; Raicević, S.; Janaćković, D.; Mitrić, M. Factors influencing the removal of divalent cations by hydroxyapatite. J. Hazard. Mater. 2008, 152, 876-84.

36. Shimabayashi, S.; Tamura, C.; Nakagaki, M. Adsorption of mono- and divalent metal cations on hydroxyapatite in water. Chem. Pharm. Bull. 1981, 29, 2116-22.

37. Takeuchi, Y.; Arai, H. Removal of coexisting Pb2+, Cu2+ and Cd2+ ions from water by addition of hydroxyapatite powder. J. Chem. Eng. Japan. 1990, 23, 75-80.

38. Peng, S.; Lin, Y.; Lee, W.; Lin, Y.; Hung, M.; Lin, K. Removal of Cu2+ from wastewater using eco-hydroxyapatite synthesized from marble sludge. Mater. Chem. Phys. 2023, 293, 126854.

39. Geng, Z.; Cui, Z.; Li, Z.; et al. Synthesis, characterization and the formation mechanism of magnesium- and strontium-substituted hydroxyapatite. J. Mater. Chem. B. 2015, 3, 3738-46.

40. Saito, T.; Yokoi, T.; Nakamura, A.; Matsunaga, K. Formation energies and site preference of substitutional divalent cations in carbonated apatite. J. Am. Ceram. Soc. 2020, 103, 5354-64.

41. Oh, S. C.; Lei, Y.; Chen, H.; Liu, D. Catalytic consequences of cation and anion substitutions on rate and mechanism of oxidative coupling of methane over hydroxyapatite catalysts. Fuel 2017, 191, 472-85.

42. Liu, H.; Cui, X.; Lu, X.; Liu, X.; Zhang, L.; Chan, T. Mechanism of Mn incorporation into hydroxyapatite: Insights from SR-XRD, Raman, XAS, and DFT calculation. Chem. Geol. 2021, 579, 120354.

43. Ellis, D. E.; Terra, J.; Warschkow, O.; et al. A theoretical and experimental study of lead substitution in calcium hydroxyapatite. Phys. Chem. Chem. Phys. 2006, 8, 967-76.

44. Kandori, K.; Toshima, S.; Wakamura, M.; Fukusumi, M.; Morisada, Y. Effects of modification of calcium hydroxyapatites by trivalent metal ions on the protein adsorption behavior. J. Phys. Chem. B. 2010, 114, 2399-404.

45. Singh, G.; Jolly, S. S.; Singh, R. P. Cerium substituted hydroxyapatite mesoporous nanorods: synthesis and characterization for drug delivery applications. Mater. Today. Proc. 2020, 28, 1460-6.

46. Ciobanu, G.; Maria, Bargan., A.; Luca, C. New cerium(IV)-substituted hydroxyapatite nanoparticles: preparation and characterization. Ceram. Int. 2015, 41, 12192-201.

47. Ivanova, T.; Frank-Kamenetskaya, O.; Kol'tsov, A.; Ugolkov, V. Crystal structure of calcium-deficient carbonated hydroxyapatite. thermal decomposition. J. Solid. State. Chem. 2001, 160, 340-9.

48. Resende, N. S.; Nele, M.; Salim, V. M. Effects of anion substitution on the acid properties of hydroxyapatite. Thermochim. Acta. 2006, 451, 16-21.

49. Astala, R.; Stott, M. J. First principles investigation of mineral component of bone: CO3 substitutions in hydroxyapatite. Chem. Mater. 2005, 17, 4125-33.

50. Lunsford, J. H. The catalytic oxidative coupling of methane. Angew. Chem. Int. Ed. 1995, 34, 970-80.

51. Arndt, S.; Otremba, T.; Simon, U.; Yildiz, M.; Schubert, H.; Schomäcker, R. Mn-Na2WO4/SiO2 as catalyst for the oxidative coupling of methane. What is really known? Appl. Catal. A. Gen. 2012, 425-6, 53-61.

52. Feng, R.; Niu, P.; Wang, Q.; et al. In-depth understanding of the crystal-facet effect of La2O2CO3 for low-temperature oxidative coupling of methane. Fuel 2022, 308, 121848.

53. Wang, Z.; Wang, D.; Gong, X. Strategies to improve the activity while maintaining the selectivity of oxidative coupling of methane at La2O3: a density functional theory study. ACS. Catal. 2020, 10, 586-94.

54. Park, J. H.; Lee, D.; Im, S.; et al. Oxidative coupling of methane using non-stoichiometric lead hydroxyapatite catalyst mixtures. Fuel 2012, 94, 433-9.

55. Lee, K. Y.; Han, Y. C.; Suh, D. J.; Park, T. J. Pb-substituted hydroxyapatite catalysts prepared by coprecipitation method for oxidative coupling of methane. Stud. Surf. Sci. Catal. 1998, 119, 385-90.

56. Bae, Y. K.; Jun, J. H.; Yoon, K. J. Oxidative coupling of methane over promoted strontium chlorapatite. Korean. J. Chem. Eng. 1999, 16, 595-601.

57. Sugiyama, S.; Fujii, Y.; Hayashi, H. Oxidative coupling of methane on calcium-lead and barium-lead hydroxyapatites. Phosphorus. Res. Bull. 2002, 14, 111-8.

58. Oh, S. C.; Wu, Y.; Tran, D. T.; Lee, I. C.; Lei, Y.; Liu, D. Influences of cation and anion substitutions on oxidative coupling of methane over hydroxyapatite catalysts. Fuel 2016, 167, 208-17.

59. Matsumura, Y.; Sugiyama, S.; Hayashi, H.; Moffat, J. B. Lead-calcium hydroxyapatite: cation effects in the oxidative coupling of methane. J. Solid. State. Chem. 1995, 114, 138-45.

60. Oh, S. C.; Xu, J.; Tran, D. T.; Liu, B.; Liu, D. Effects of controlled crystalline surface of hydroxyapatite on methane oxidation reactions. ACS. Catal. 2018, 8, 4493-507.

61. Xiang, D.; Li, P.; Yuan, X. Process optimization, exergy efficiency, and life cycle energy consumption-GHG emissions of the propane-to-propylene with/without hydrogen production process. J. Clean. Prod. 2022, 367, 133024.

62. Atanga, M. A.; Rezaei, F.; Jawad, A.; Fitch, M.; Rownaghi, A. A. Oxidative dehydrogenation of propane to propylene with carbon dioxide. Appl. Catal. B. Environ. 2018, 220, 429-45.

63. Carter, J. H.; Bere, T.; Pitchers, J. R.; et al. Direct and oxidative dehydrogenation of propane: from catalyst design to industrial application. Green. Chem. 2021, 23, 9747-99.

64. Yu, C.; Ge, Q.; Xu, H.; Li, W. Influence of oxygen addition on the reaction of propane catalytic dehydrogenation to propylene over modified Pt-based catalysts. Ind. Eng. Chem. Res. 2007, 46, 8722-8.

65. Barman, S.; Maity, N.; Bhatte, K.; et al. Single-site VOx moieties generated on silica by surface organometallic chemistry: a way to enhance the catalytic activity in the oxidative dehydrogenation of propane. ACS. Catal. 2016, 6, 5908-21.

66. Sugiyama, S.; Shono, T.; Makino, D.; Moriga, T.; Hayashi, H. Enhancement of the catalytic activities in propane oxidation and H-D exchangeability of hydroxyl groups by the incorporation with cobalt into strontium hydroxyapatite. J. Catal. 2003, 214, 8-14.

67. Boucetta, C.; Kacimi, M.; Ensuque, A.; Piquemal, J.; Bozon-Verduraz, F.; Ziyad, M. Oxidative dehydrogenation of propane over chromium-loaded calcium-hydroxyapatite. Appl. Catal. A. Gen. 2009, 356, 201-10.

68. Sugiyama, S.; Osaka, T.; Hirata, Y.; Sotowa, K. Enhancement of the activity for oxidative dehydrogenation of propane on calcium hydroxyapatite substituted with vanadate. Appl. Catal. A. Gen. 2006, 312, 52-8.

69. Petit, S.; Thomas, C.; Millot, Y.; Krafft, J.; Laberty-Robert, C.; Costentin, G. Activation of C-H bond of propane by strong basic sites generated by bulk proton conduction on V-modified hydroxyapatites for the formation of propene. ChemCatChem 2020, 12, 2506-21.

70. Smith, S. M.; Oopathum, C.; Weeramongkhonlert, V.; et al. Transesterification of soybean oil using bovine bone waste as new catalyst. Bioresour. Technol. 2013, 143, 686-90.

71. Al-Sakkari, E. G.; Mohammed, M. G.; Elozeiri, A. A.; et al. Comparative technoeconomic analysis of using waste and virgin cooking oils for biodiesel production. Front. Energy. Res. 2020, 8, 583357.

72. Changmai, B.; Vanlalveni, C.; Ingle, A. P.; Bhagat, R.; Rokhum, S. L. Widely used catalysts in biodiesel production: a review. RSC. Adv. 2020, 10, 41625-79.

73. Badnore, A. U.; Jadhav, N. L.; Pinjari, D. V.; Pandit, A. B. Efficacy of newly developed nano-crystalline calcium oxide catalyst for biodiesel production. Chem. Eng. Process. Process. Intensif. 2018, 133, 312-9.

74. Marinković, D. M.; Stanković, M. V.; Veličković, A. V.; et al. Calcium oxide as a promising heterogeneous catalyst for biodiesel production: current state and perspectives. Renew. Sustain. Energy. Rev. 2016, 56, 1387-408.

75. Chen, G.; Shan, R.; Shi, J.; Liu, C.; Yan, B. Biodiesel production from palm oil using active and stable K doped hydroxyapatite catalysts. Energy. Convers. Manag. 2015, 98, 463-9.

76. Chakraborty, R.; Das, S. K. Optimization of biodiesel synthesis from waste frying soybean oil using fish scale-supported Ni catalyst. Ind. Eng. Chem. Res. 2012, 51, 8404-14.

77. Yan, B.; Zhang, Y.; Chen, G.; Shan, R.; Ma, W.; Liu, C. The utilization of hydroxyapatite-supported CaO-CeO2 catalyst for biodiesel production. Energy. Convers. Manag. 2016, 130, 156-64.

78. Ghanei, R.; Khalili Dermani, R.; Salehi, Y.; Mohammadi, M. Waste animal bone as support for CaO impregnation in catalytic biodiesel production from vegetable oil. Waste. Biomass. Valor. 2016, 7, 527-32.

79. Essamlali, Y.; Amadine, O.; Larzek, M.; Len, C.; Zahouily, M. Sodium modified hydroxyapatite: highly efficient and stable solid-base catalyst for biodiesel production. Energy. Convers. Manag. 2017, 149, 355-67.

80. Xie, W.; Han, Y.; Tai, S. Biodiesel production using biguanide-functionalized hydroxyapatite-encapsulated-γ-Fe2O3 nanoparticles. Fuel 2017, 210, 83-90.

81. Gupta, J.; Agarwal, M.; Dalai, A. K. Marble slurry derived hydroxyapatite as heterogeneous catalyst for biodiesel production from soybean oil. Can. J. Chem. Eng. 2018, 96, 1873-80.

82. Khan, H. M.; Iqbal, T.; Ali, C. H.; Yasin, S.; Jamil, F. Waste quail beaks as renewable source for synthesizing novel catalysts for biodiesel production. Renew. Energy. 2020, 154, 1035-43.

83. Alipour, Z.; Babu Borugadda, V.; Wang, H.; Dalai, A. K. Syngas production through dry reforming: a review on catalysts and their materials, preparation methods and reactor type. Chem. Eng. J. 2023, 452, 139416.

84. Göransson, K.; Söderlind, U.; He, J.; Zhang, W. Review of syngas production via biomass DFBGs. Renew. Sustain. Energy. Rev. 2011, 15, 482-92.

85. Fiore, M.; Magi, V.; Viggiano, A. Internal combustion engines powered by syngas: a review. Appl. Energy. 2020, 276, 115415.

86. Song, Y.; Ozdemir, E.; Ramesh, S.; et al. Dry reforming of methane by stable Ni-Mo nanocatalysts on single-crystalline MgO. Science 2020, 367, 777-81.

87. Zhou, Q.; Fu, X.; Hui Lim, K.; et al. Complete confinement of Ce/Ni within SiO2 nanotube with high oxygen vacancy concentration for CO2 methane reforming. Fuel 2022, 325, 124819.

88. Tanimu, A.; Yusuf, B. O.; Lateef, S.; et al. Dry reforming of methane: advances in coke mitigation strategies via siliceous catalyst formulations. J. Environ. Chem. Eng. 2024, 12, 113873.

89. Akri, M.; Zhao, S.; Li, X.; et al. Atomically dispersed nickel as coke-resistant active sites for methane dry reforming. Nat. Commun. 2019, 10, 5181.

90. Meng, J.; Pan, W.; Gu, T.; et al. One-pot synthesis of a highly active and stable Ni-embedded hydroxyapatite catalyst for syngas production via dry reforming of methane. Energy. Fuels. 2021, 35, 19568-80.

91. Rego de Vasconcelos, B.; Pham Minh, D.; Martins, E.; Germeau, A.; Sharrock, P.; Nzihou, A. Highly-efficient hydroxyapatite-supported nickel catalysts for dry reforming of methane. Int. J. Hydrogen. Energy. 2020, 45, 18502-18.

92. Tran, T. Q.; Pham Minh, D.; Phan, T. S.; Pham, Q. N.; Nguyen Xuan, H. Dry reforming of methane over calcium-deficient hydroxyapatite supported cobalt and nickel catalysts. Chem. Eng. Sci. 2020, 228, 115975.

93. Boukha, Z.; Kacimi, M.; Pereira, M. F. R.; Faria, J. L.; Figueiredo, J. L.; Ziyad, M. Methane dry reforming on Ni loaded hydroxyapatite and fluoroapatite. Appl. Catal. A. Gen. 2007, 317, 299-309.

94. Phan, T. S.; Sane, A. R.; Rêgo de Vasconcelos, B.; et al. Hydroxyapatite supported bimetallic cobalt and nickel catalysts for syngas production from dry reforming of methane. Appl. Catal. B. Environ. 2018, 224, 310-21.

95. Rêgo De Vasconcelos, B.; Zhao, L.; Sharrock, P.; Nzihou, A.; Pham Minh, D. Catalytic transformation of carbon dioxide and methane into syngas over ruthenium and platinum supported hydroxyapatites. App. Surf. Sci. 2016, 390, 141-56.

96. Akri, M.; El Kasmi, A.; Batiot-Dupeyrat, C.; Qiao, B. Highly active and carbon-resistant nickel single-atom catalysts for methane dry reforming. Catalysts 2020, 10, 630.

97. Li, B.; Yuan, X.; Li, B.; Wang, X. Impact of pore structure on hydroxyapatite supported nickel catalysts (Ni/HAP) for dry reforming of methane. Fuel. Proc. Technol. 2020, 202, 106359.

98. Rego de Vasconcelos, B.; Pham Minh, D.; Sharrock, P.; Nzihou, A. Regeneration study of Ni/hydroxyapatite spent catalyst from dry reforming. Catal. Today. 2018, 310, 107-15.

99. Dębek, R.; Motak, M.; Duraczyska, D.; et al. Methane dry reforming over hydrotalcite-derived Ni-Mg-Al mixed oxides: the influence of Ni content on catalytic activity, selectivity and stability. Catal. Sci. Technol. 2016, 6, 6705-15.

100. Parkinson, B.; Matthews, J. W.; Mcconnaughy, T. B.; Upham, D. C.; Mcfarland, E. W. Techno-economic analysis of methane pyrolysis in molten metals: decarbonizing natural gas. Chem. Eng. Technol. 2017, 40, 1022-30.

101. Elbadawi, A. H.; Ge, L.; Li, Z.; Liu, S.; Wang, S.; Zhu, Z. Catalytic partial oxidation of methane to syngas: review of perovskite catalysts and membrane reactors. Catal. Rev. 2021, 63, 1-67.

102. Jun, J. Nickel-calcium phosphate/hydroxyapatite catalysts for partial oxidation of methane to syngas: characterization and activation. J. Catal. 2004, 221, 178-90.

103. Matsumura, Y.; Moffat, J. Partial oxidation of methane to carbon-monoxide and hydrogen with molecular-oxygen and nitrous-oxide over hydroxyapatite catalysts. J. Catal. 1994, 148, 323-33.

104. Sugiyama, S.; Minami, T.; Higaki, T.; Hayashi, H.; Moffat, J. B. High selective conversion of methane to carbon monoxide and the effects of chlorine additives in the gas and solid phases on the oxidation of methane on strontium hydroxyapatites. Ind. Eng. Chem. Res. 1997, 36, 328-34.

105. Sugiyama, S.; Abe, K.; Minami, T.; Hayashi, H.; Moffat, J. B. A comparative study of the oxidation of methane and ethane on calcium hydroxyapatites with incorporated lead in the presence and absence of tetrachloromethane. Appl. Catal. A. Gen. 1998, 169, 77-86.

106. Sugiyama, S.; Fujii, Y.; Abe, K.; Hayashi, H.; Moffat, J. B. Facile formation of the partial oxidation and oxidative-coupling products from the oxidation of methane on barium hydroxyapatites with tetrachloromethane. Energy. Fuels. 1999, 13, 637-40.

107. Sugiyama, S. Oxidation of methane with nitrous oxide on calcium hydroxyapatites in the presence and absence of tetrachloromethane. J. Mol. Catal. A. Chem. 1999, 144, 347-55.

108. Jun, J. H.; Lee, S. J.; Lee, S.; et al. Characterization of a nickel-strontium phosphate catalyst for partial oxidation of methane. Korean. J. Chem. Eng. 2003, 20, 829-34.

109. Jun, J. H.; Jeong, K. S.; Lee, T.; et al. Nickel-calcium phosphate/hydroxyapatite catalysts for partial oxidation of methane to syngas: effect of composition. Korean. J. Chem. Eng. 2004, 21, 140-6.

110. Kim, K. H.; Lee, S. Y.; Nam, S.; Lim, T. H.; Hong, S.; Yoon, K. J. Promotion effects of ceria in partial oxidation of methane over Ni-calcium hydroxyapatite. Korean. J. Chem. Eng. 2006, 23, 17-20.

111. Jun, J.; Lim, T.; Nam, S.; Hong, S.; Yoon, K. Mechanism of partial oxidation of methane over a nickel-calcium hydroxyapatite catalyst. Appl. Catal. A. Gen. 2006, 312, 27-34.

112. Boukha, Z.; Gil-Calvo, M.; de Rivas, B.; González-Velasco, J. R.; Gutiérrez-Ortiz, J. I.; López-Fonseca, R. Behaviour of Rh supported on hydroxyapatite catalysts in partial oxidation and steam reforming of methane: on the role of the speciation of the Rh particles. Appl. Catal. A. Gen. 2018, 556, 191-203.

113. Ding, K.; Gulec, A.; Johnson, A. M.; et al. Identification of active sites in CO oxidation and water-gas shift over supported Pt catalysts. Science 2015, 350, 189-92.

114. Haruta, M. Gold catalysts prepared by coprecipitation for low-temperature oxidation of hydrogen and of carbon monoxide. J. Catal. 1989, 115, 301-9.

115. Green, I. X.; Tang, W.; Neurock, M.; Yates, J. T., Jr. Spectroscopic observation of dual catalytic sites during oxidation of CO on a Au/TiO2 catalyst. Science 2011, 333, 736-9.

116. Guzman, J.; Gates, B. C. Catalysis by supported gold: correlation between catalytic activity for CO oxidation and oxidation states of gold. J. Am. Chem. Soc. 2004, 126, 2672-3.

117. Zhao, K.; Qiao, B.; Wang, J.; Zhang, Y.; Zhang, T. A highly active and sintering-resistant Au/FeOx-hydroxyapatite catalyst for CO oxidation. Chem. Commun. 2011, 47, 1779-81.

118. Huang, J.; Wang, L.; Liu, Y.; Cao, Y.; He, H.; Fan, K. Gold nanoparticles supported on hydroxylapatite as high performance catalysts for low temperature CO oxidation. Appl. Catal. B. Environ. 2011, 101, 560-9.

119. Domínguez, M. I.; Romero-Sarria, F.; Centeno, M. A.; Odriozola, J. A. Gold/hydroxyapatite catalysts: synthesis, characterization and catalytic activity to CO oxidation. Appl. Catal. B. Environ. 2009, 87, 245-51.

120. Tang, H.; Wei, J.; Liu, F.; et al. Strong metal-support interactions between gold nanoparticles and nonoxides. J. Am. Chem. Soc. 2016, 138, 56-9.

121. Zhao, K.; Qiao, B.; Zhang, Y.; Wang, J. The roles of hydroxyapatite and FeOx in a Au/FeOx hydroxyapatite catalyst for CO oxidation. Chin. J. Catal. 2013, 34, 1386-94.

122. Guo, J.; Yu, H.; Dong, F.; Zhu, B.; Huang, W.; Zhang, S. High efficiency and stability of Au-Cu/hydroxyapatite catalyst for the oxidation of carbon monoxide. RSC. Adv. 2017, 7, 45420-31.

123. Boukha, Z.; Ayastuy, J. L.; Cortés-Reyes, M.; Alemany, L. J.; González-Velasco, J. R.; Gutiérrez-Ortiz, M. A. Catalytic performance of Cu/hydroxyapatite catalysts in CO preferential oxidation in H2-rich stream. Int. J. Hydrogen. Energy. 2019, 44, 12649-60.

124. Ratnasamy, C.; Wagner, J. P. Water gas shift catalysis. Catal. Rev. 2009, 51, 325-440.

125. Zhu, M.; Wachs, I. E. Iron-based catalysts for the high-temperature water-gas shift (HT-WGS) reaction: a review. ACS. Catal. 2016, 6, 722-32.

126. Miao, D.; Goldbach, A.; Xu, H. Platinum/apatite water-gas shift catalysts. ACS. Catal. 2016, 6, 775-83.

127. Ding, X.; Liu, W.; Zhao, J.; Wang, L.; Zou, Z. Photothermal CO2 catalysis toward the synthesis of solar fuel: from material and reactor engineering to techno-economic analysis. Adv. Mater. 2025, 37, e2312093.

128. Choi, S. H.; Song, I.; Dong, W. J. Recent progress of photothermal catalysts for carbon dioxide conversion. Energy. Mater. 2025, 5, 500062.

129. Medina, O. E.; Amell, A. A.; López, D.; Santamaría, A. Comprehensive review of nickel-based catalysts advancements for CO2 methanation. Renew. Sustain. Energy. Rev. 2025, 207, 114926.

130. Cheng, S.; Sun, Z.; Lim, K. H.; et al. Integrating plasmon and vacancies over oxide perovskite for synergistic CO2 methanation. Nano. Energy. 2025, 139, 110917.

131. Medeiros, F. G. M. D.; Ramalho, T. E. B.; Lotfi, S.; Rego de Vasconcelos, B. Direct flue gas hydrogenation to methane over hydroxyapatite-supported nickel catalyst. Fuel. Proc. Technol. 2023, 245, 107750.

132. Peng, Y.; Szalad, H.; Nikacevic, P.; et al. Co-doped hydroxyapatite as photothermal catalyst for selective CO2 hydrogenation. Appl. Catal. B. Environ. 2023, 333, 122790.

133. Guo, J.; Duchesne, P. N.; Wang, L.; et al. High-performance, scalable, and low-cost copper hydroxyapatite for photothermal CO2 reduction. ACS. Catal. 2020, 10, 13668-81.

134. Wai, M. H.; Ashok, J.; Dewangan, N.; et al. Influence of surface formate species on methane selectivity for carbon dioxide methanation over nickel hydroxyapatite catalyst. ChemCatChem 2020, 12, 6410-9.

135. Boukha, Z.; Bermejo-López, A.; Pereda-Ayo, B.; González-Marcos, J. A.; González-Velasco, J. R. Study on the promotional effect of lanthana addition on the performance of hydroxyapatite-supported Ni catalysts for the CO2 methanation reaction. Appl. Catal. B. Environ. 2022, 314, 121500.

136. Nguyen, T. T. V.; Phung Anh, N.; Ho, T. G.; et al. Hydroxyapatite derived from salmon bone as green ecoefficient support for ceria-doped nickel catalyst for CO2 methanation. ACS. Omega. 2022, 7, 36623-33.

137. Schiavoni, M.; Campisi, S.; Carniti, P.; Gervasini, A.; Delplanche, T. Focus on the catalytic performances of Cu-functionalized hydroxyapatites in NH3-SCR reaction. Appl. Catal. A. Gen. 2018, 563, 43-53.

138. Wang, J.; Liu, J.; Lu, Y.; Hong, D.; Yang, X. Catalytic performance of gold nanoparticles using different crystallinity HAP as carrier materials. Mater. Res. Bull. 2014, 55, 190-7.

139. Haruta, M.; Kobayashi, T.; Sano, H.; Yamada, N. Novel gold catalysts for the oxidation of carbon monoxide at a temperature far below 0 °C. Chem. Lett. 1987, 16, 405-8.

140. Haruta, M. Size- and support-dependency in the catalysis of gold. Catal. Today. 1997, 36, 153-66.

141. Kim, D.; Resasco, J.; Yu, Y.; Asiri, A. M.; Yang, P. Synergistic geometric and electronic effects for electrochemical reduction of carbon dioxide using gold-copper bimetallic nanoparticles. Nat. Commun. 2014, 5, 4948.

142. Boukha, Z.; Choya, A.; Cortés-Reyes, M.; et al. Influence of the calcination temperature on the activity of hydroxyapatite-supported palladium catalyst in the methane oxidation reaction. Appl. Catal. B. Environ. 2020, 277, 119280.

143. Kamieniak, J.; Kelly, P. J.; Doyle, A. M.; Banks, C. E. Influence of the metal/metal oxide redox cycle on the catalytic activity of methane oxidation over Pd and Ni doped hydroxyapatite. Catal. Commun. 2018, 107, 82-6.

144. Das, S.; Lim, K. H.; Gani, T. Z.; Aksari, S.; Kawi, S. Bi-functional CeO2 coated NiCo-MgAl core-shell catalyst with high activity and resistance to coke and H2S poisoning in methane dry reforming. Appl. Catal. B. Environ. 2023, 323, 122141.

145. Zhang, J.; Li, Y.; Song, H.; et al. Tuning metal-support interactions in nickel-zeolite catalysts leads to enhanced stability during dry reforming of methane. Nat. Commun. 2024, 15, 8566.

146. Kamieniak, J.; Kelly, P. J.; Banks, C. E.; Doyle, A. M. Methane emission management in a dual-fuel engine exhaust using Pd and Ni hydroxyapatite catalysts. Fuel 2017, 208, 314-20.

147. Campisi, S.; Galloni, M. G.; Marchetti, S. G.; Auroux, A.; Postole, G.; Gervasini, A. Functionalized iron hydroxyapatite as eco-friendly catalyst for NH3-SCR reaction: activity and role of iron speciation on the surface. ChemCatChem 2020, 12, 1676-90.

148. Mateo, D.; Cerrillo, J. L.; Durini, S.; Gascon, J. Fundamentals and applications of photo-thermal catalysis. Chem. Soc. Rev. 2021, 50, 2173-210.

149. Guo, J.; Liang, Y.; Song, R.; et al. Construction of new active sites: Cu substitution enabled surface frustrated lewis pairs over calcium hydroxyapatite for CO2 hydrogenation. Adv. Sci. 2021, 8, e2101382.

150. Li, B.; Chen, H.; Yuan, X. Influence of different La2O3 loading on hydroxyapatite supported nickel catalysts in the dry reforming of methane. Fuel 2024, 369, 131687.

151. Xiong, C.; Chen, S.; Yang, P.; Zha, S.; Zhao, Z.; Gong, J. Structure-performance relationships for propane dehydrogenation over aluminum supported vanadium oxide. ACS. Catal. 2019, 9, 5816-27.

152. Xin, Y.; Shirai, T. Noble-metal-free hydroxyapatite activated by facile mechanochemical treatment towards highly-efficient catalytic oxidation of volatile organic compound. Sci. Rep. 2021, 11, 7512.

153. Ye, R.; Ding, J.; Reina, T. R.; et al. Design of catalysts for selective CO2 hydrogenation. Nat. Synth. 2025, 4, 288-302.

154. Paris, C.; Karelovic, A.; Manrique, R.; et al. CO2 hydrogenation to methanol with Ga- and Zn-doped mesoporous Cu/SiO2 catalysts prepared by the aerosol-assisted sol-gel process. ChemSusChem 2020, 13, 6409-17.

155. Phan, T. S.; Pham Minh, D. New performing hydroxyapatite-based catalysts in dry-reforming of methane. Int. J. Hydrogen. Energy. 2023, 48, 30770-90.

156. Li, X.; Wang, Y.; Wei, X.; Zhao, Y. Effect of Na promoter on the catalytic performance of Pd-Cu/hydroxyapatite catalyst for room-temperature CO oxidation. Mol. Catal. 2020, 491, 111002.

157. Martínez-Hernández, H.; Mendoza-Nieto, J. A.; Pfeiffer, H.; Ortiz-Landeros, J.; Téllez-Jurado, L. Development of novel nano-hydroxyapatite doped with silver as effective catalysts for carbon monoxide oxidation. Chem. Eng. J. 2020, 401, 125992.

158. Maluf, S. S.; Tanabe, E. Y.; Nascente, P. A. P.; Assaf, E. M. Study of water - gas-shift reaction over La(1-y)SryNixCo(1-x)O3 perovskite as precursors. Top. Catal. 2011, 54, 210-8.

159. Rabee, A. I.; Cisneros, S.; Zhao, D.; et al. Uncovering the synergy between gold and sodium on ZrO2 for boosting the reverse water gas shift reaction: in-situ spectroscopic investigations. Appl. Catal. B. Environ. 2024, 345, 123685.

160. Rodriguez, J. A.; Grinter, D. C.; Liu, Z.; Palomino, R. M.; Senanayake, S. D. Ceria-based model catalysts: fundamental studies on the importance of the metal-ceria interface in CO oxidation, the water-gas shift, CO2 hydrogenation, and methane and alcohol reforming. Chem. Soc. Rev. 2017, 46, 1824-41.

161. Iriarte-Velasco, U.; Ayastuy, J. L.; Boukha, Z.; Bravo, R.; Gutierrez-Ortiz, MÁ. Transition metals supported on bone-derived hydroxyapatite as potential catalysts for the Water-Gas Shift reaction. Renew. Energy. 2018, 115, 641-8.

162. Su, T.; Gong, B.; Xie, X.; Luo, X.; Qin, Z.; Ji, H. Effect of cobalt on the activity of nickel-based/magnesium-substituted hydroxyapatite catalysts for dry reforming of methane. Chinese. J. Chem. Eng. 2024, 76, 281-91.

163. Boukha, Z.; Bermejo-López, A.; De-La-Torre, U.; González-Velasco, J. R. Behavior of nickel supported on calcium-enriched hydroxyapatite samples for CCU-methanation and ICCU-methanation processes. Appl. Catal. B. Environ. 2023, 338, 122989.

164. Pan, Q.; Peng, J.; Sun, T.; Wang, S.; Wang, S. Insight into the reaction route of CO2 methanation: promotion effect of medium basic sites. Catal. Commun. 2014, 45, 74-8.

165. Čapek, L.; Hájek, M.; Kutálek, P.; Smoláková, L. Aspects of potassium leaching in the heterogeneously catalyzed transesterification of rapeseed oil. Fuel 2014, 115, 443-51.

166. Nisar, J.; Razaq, R.; Farooq, M.; et al. Enhanced biodiesel production from Jatropha oil using calcined waste animal bones as catalyst. Renew. Energy. 2017, 101, 111-9.

167. Liu, C. A.; Cui, Y.; Zhou, Y. The recent progress of single-atom catalysts on amorphous substrates for electrocatalysis. Energy. Mater. 2025, 5, 500001.

168. Yamaguchi, K.; Mori, K.; Mizugaki, T.; Ebitani, K.; Kaneda, K. Creation of a monomeric Ru species on the surface of hydroxyapatite as an efficient heterogeneous catalyst for aerobic alcohol oxidation. J. Am. Chem. Soc. 2000, 122, 7144-5.

169. Ogo, S.; Maeda, S.; Sekine, Y. Coke resistance of Sr-hydroxyapatite supported Co catalyst for ethanol steam reforming. Chem. Lett. 2017, 46, 729-32.

170. Bittencourt, A. F. B.; Moraes, P. I. R.; Da Silva, J. L. F. Mechanistic insights into the direct partial oxidation of methane to methanol catalyzed by single-atom transition metals on hydroxyapatite. ACS. Omega. 2025, 10, 3868-77.

171. Tounsi, H.; Djemal, S.; Petitto, C.; Delahay, G. Copper loaded hydroxyapatite catalyst for selective catalytic reduction of nitric oxide with ammonia. Appl. Catal. B. Environ. 2011, 107, 158-63.

172. Lu, Z.; Cheng, Y.; Ma, D.; et al. Substitution of Fe in hydroxyapatite as an efficient single-atom catalyst for oxygen reduction reaction in biofuel cells: a first-principles study. Appl. Surf. Sci. 2021, 539, 148233.

173. Wang, J.; Li, W.; Di, A.; et al. Boosting C6-12 higher alcohols yield from ethanol upgrading over Ca-deficient mesoporous hydroxyapatite through intermediates enrichment of C4 aldehyde. ACS. Catal. 2025, 15, 8599-610.

174. Kamieniak, J.; Doyle, A. M.; Kelly, P. J.; Banks, C. E. Novel synthesis of mesoporous hydroxyapatite using carbon nanorods as a hard-template. Ceram. Int. 2017, 43, 5412-6.

175. Chingakham, C.; Tiwary, C.; Sajith, V. Waste animal bone as a novel layered heterogeneous catalyst for the transesterification of biodiesel. Catal. Lett. 2019, 149, 1100-10.

176. Bittencourt, A. F. B.; Valença, G. P.; Da Silva, J. L. F. Elucidating the catalytic valorization of ethanol over hydroxyapatite for sustainable butanol production: a first-principles mechanistic study. J. Phys. Chem. C. 2024, 128, 14663-73.

177. Wang, J.; Yan, X.; Wang, X.; Yang, M.; Xu, D. Selective activation of methane on hydroxyapatite surfaces: Insights from machine learning and density functional theory. Nano. Energy. 2024, 127, 109762.

178. Brasil, H.; Bittencourt, A. F.; Yokoo, K. C.; et al. Synthesis modification of hydroxyapatite surface for ethanol conversion: The role of the acidic/basic sites ratio. J. Catal. 2021, 404, 802-13.

179. Cheng, X.; He, Q.; Li, J.; Huang, Z.; Chi, R. Control of pore size of the bubble-template porous carbonated hydroxyapatite microsphere by adjustable pressure. Cryst. Growth. Des. 2009, 9, 2770-5.

180. Nowicki, D. A. Utilisation of carbon dioxide in the synthesis of multifunctional AB-type carbonated hydroxyapatite compositions. J. Solid. State. Chem. 2024, 334, 124678.

181. Ojeda-Niño, O. H.; Blanco, C.; Daza, C. E. High temperature CO2 capture of hydroxyapatite extracted from tilapia scales. Univ. Sci. 2017, 22, 215-36.

182. Chen, F. F.; Zhu, Y. J.; Xiong, Z. C.; Sun, T. W. Hydroxyapatite nanowires@metal-organic framework core/shell nanofibers: templated synthesis, peroxidase-like activity, and derived flexible recyclable test paper. Chemistry 2017, 23, 3328-37.

183. Sun, T. W.; Yu, W. L.; Zhu, Y. J.; et al. Hydroxyapatite nanowire@magnesium silicate core-shell hierarchical nanocomposite: synthesis and application in bone regeneration. ACS. Appl. Mater. Interfaces. 2017, 9, 16435-47.

184. Yang, Y. H.; Liu, C. H.; Liang, Y. H.; Lin, F. H.; Wu, K. C. Hollow mesoporous hydroxyapatite nanoparticles (hmHANPs) with enhanced drug loading and pH-responsive release properties for intracellular drug delivery. J. Mater. Chem. B. 2013, 1, 2447-50.

185. Omodolor, I. S.; Otor, H. O.; Andonegui, J. A.; Allen, B. J.; Alba-Rubio, A. C. Dual-function materials for CO2 capture and conversion: a review. Ind. Eng. Chem. Res. 2020, 59, 17612-31.

186. Annamalai, L.; Liu, Y.; Deshlahra, P. Selective C-H bond activation via NOx-mediated generation of strong H-abstractors. ACS. Catal. 2019, 9, 10324-38.

187. Liang, Y.; Li, Z.; Nourdine, M.; Shahid, S.; Takanabe, K. Methane coupling reaction in an oxy-steam stream through an OH radical pathway by using supported alkali metal catalysts. ChemCatChem 2014, 6, 1245-51.

188. Tu, S.; Guo, Y.; Zhang, Y.; et al. Piezocatalysis and piezo-photocatalysis: catalysts classification and modification strategy, reaction mechanism, and practical application. Adv. Funct. Mater. 2020, 30, 2005158.

189. Rodriguez, R.; Rangel, D.; Fonseca, G.; Gonzalez, M.; Vargas, S. Piezoelectric properties of synthetic hydroxyapatite-based organic-inorganic hydrated materials. Results. Phys. 2016, 6, 925-32.

190. Vasquez-Sancho, F.; Abdollahi, A.; Damjanovic, D.; Catalan, G. Flexoelectricity in bones. Adv. Mater. 2018, 30, 1705316.

191. Zhou, Y.; Wang, H.; Liu, X.; et al. Direct piezocatalytic conversion of methane into alcohols over hydroxyapatite. Nano. Energy. 2021, 79, 105449.

192. Xue, M.; Jin, Z.; Yang, B.; Xia, C.; Zhu, G. Boosting higher alcohols selectivity via regulating basicity of Ni/hydroxyapatite in ethanol upgrading. ACS. Catal. 2024, 14, 12654-63.

193. Medeiros, F. G. M. D.; Farzi, F.; Achouri, I. E.; Lotfi, S.; Rego de Vasconcelos, B. Performance of hydroxyapatite-supported catalysts for methane production via CO2 hydrogenation on semi-pilot scale. Waste. Biomass. Valor. 2023, 14, 3429-44.

Energy Materials
ISSN 2770-5900 (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/