REFERENCES
1. Kim, J. H.; Hansora, D.; Sharma, P.; Jang, J. W.; Lee, J. S. Toward practical solar hydrogen production - an artificial photosynthetic leaf-to-farm challenge. Chem. Soc. Rev. 2019, 48, 1908-71.
2. Rossmeisl, J.; Logadottir, A.; Nørskov, J. Electrolysis of water on (oxidized) metal surfaces. Chem. Phys. 2005, 319, 178-84.
3. Man, I. C.; Su, H. Y.; Calle-Vallejo, F.; et al. Universality in oxygen evolution electrocatalysis on oxide surfaces. ChemCatChem 2011, 3, 1159-65.
4. Song, J.; Wei, C.; Huang, Z. F.; et al. A review on fundamentals for designing oxygen evolution electrocatalysts. Chem. Soc. Rev. 2020, 49, 2196-214.
5. Li, Y.; Je, M.; Kim, J.; et al. Rational nanopositioning of homogeneous amorphous phase on crystalline tungsten oxide for boosting solar water oxidation. Chem. Eng. J. 2022, 438, 135532.
6. Jiang, C.; Moniz, S. J. A.; Wang, A.; Zhang, T.; Tang, J. Photoelectrochemical devices for solar water splitting - materials and challenges. Chem. Soc. Rev. 2017, 46, 4645-60.
7. Yang, Y.; Niu, S.; Han, D.; Liu, T.; Wang, G.; Li, Y. Progress in developing metal oxide nanomaterials for photoelectrochemical water splitting. Adv. Energy. Mater. 2017, 7, 1700555.
8. Klotz, D.; Grave, D. A.; Rothschild, A. Accurate determination of the charge transfer efficiency of photoanodes for solar water splitting. Phys. Chem. Chem. Phys. 2017, 19, 20383-92.
9. He, H.; Liao, A.; Guo, W.; Luo, W.; Zhou, Y.; Zou, Z. State-of-the-art progress in the use of ternary metal oxides as photoelectrode materials for water splitting and organic synthesis. Nano. Today. 2019, 28, 100763.
10. Wang, Y.; Tian, W.; Chen, C.; Xu, W.; Li, L. Tungsten trioxide nanostructures for photoelectrochemical water splitting: material engineering and charge carrier dynamic manipulation. Adv. Funct. Mater. 2019, 29, 1809036.
11. Li, Y.; Mei, Q.; Liu, Z.; et al. Fluorine-doped iron oxyhydroxide cocatalyst: promotion on the WO3 photoanode conducted photoelectrochemical water splitting. Appl. Catal. B. Environ. 2022, 304, 120995.
12. Amano, F.; Tsushiro, K. Proton exchange membrane photoelectrochemical cell for water splitting under vapor feeding. Energy. Mater. 2024, 4, 400006.
13. Huang, Y.; Li, J.; Wang, H.; et al. Candle-soot template-mediated synthesis of nanoporous WO3 films as photoanodes for solar water splitting. Appl. Mater. Today. 2025, 42, 102553.
14. Jafarpour, S.; Naghshara, H. Reactive co-sputter deposition of Ta-doped tungsten oxide thin films for water splitting application. Sci. Rep. 2025, 15, 8302.
15. Li, B.; Jiang, X.; Liang, T.; et al. WO3 nanorod arrays decorated with isolated Fe active sites for photoelectrocatalytic water oxidation. J. Colloid. Interface. Sci. 2025, 689, 137257.
16. Kim, W.; Tachikawa, T.; Monllor-Satoca, D.; Kim, H.; Majima, T.; Choi, W. Promoting water photooxidation on transparent WO3 thin films using an alumina overlayer. Energy. Environ. Sci. 2013, 6, 3732.
17. Zheng, G.; Wang, J.; Liu, H.; et al. Tungsten oxide nanostructures and nanocomposites for photoelectrochemical water splitting. Nanoscale 2019, 11, 18968-94.
18. Li, Y.; Kim, M. C.; Xia, C.; et al. A natural molecule-driven organometallic conformal overlayer for high efficiency photoelectrochemical water splitting. Appl. Catal. B. Environ. 2024, 343, 123516.
19. Shinde, P. A.; Jun, S. C. Review on recent progress in the development of tungsten oxide based electrodes for electrochemical energy storage. ChemSusChem 2020, 13, 11-38.
20. Hill, J. C.; Choi, K. S. Effect of electrolytes on the selectivity and stability of n-type WO3 photoelectrodes for use in solar water oxidation. J. Phys. Chem. C. 2012, 116, 7612-20.
21. Song, H.; Li, Y.; Lou, Z.; et al. Synthesis of Fe-doped WO3 nanostructures with high visible-light-driven photocatalytic activities. Appl. Catal. B. Environ. 2015, 166-7, 112-20.
22. Wang, S.; Chen, H.; Gao, G.; et al. Synergistic crystal facet engineering and structural control of WO3 films exhibiting unprecedented photoelectrochemical performance. Nano. Energy. 2016, 24, 94-102.
23. Kim, J. H.; Yoon, J. W.; Kim, T. H.; et al. Heterostructure between WO3 and metal organic framework-derived BiVO4 nanoleaves for enhanced photoelectrochemical performances. Chem. Eng. J. 2021, 425, 131496.
24. Seabold, J. A.; Choi, K. S. Effect of a cobalt-based oxygen evolution catalyst on the stability and the selectivity of photo-oxidation reactions of a WO3 photoanode. Chem. Mater. 2011, 23, 1105-12.
25. Parmar, K. P. S.; Kang, H. J.; Bist, A.; Dua, P.; Jang, J. S.; Lee, J. S. Photocatalytic and photoelectrochemical water oxidation over metal-doped monoclinic BiVO4 photoanodes. ChemSusChem 2012, 5, 1926-34.
26. Chen, B.; Ge, B.; Fu, S.; et al. Ex-situ flame co-doping of tin and tungsten ions in TiO2 nanorod arrays for synergistic promotion of solar water splitting. Chem. Eng. Sci. 2020, 226, 115843.
27. Annamalai, A.; Shinde, P. S.; Jeon, T. H.; et al. Fabrication of superior α-Fe2O3 nanorod photoanodes through ex-situ Sn-doping for solar water splitting. Solar. Energy. Mater. Solar. Cells. 2016, 144, 247-55.
28. Wang, G.; Ling, Y.; Li, Y. Oxygen-deficient metal oxide nanostructures for photoelectrochemical water oxidation and other applications. Nanoscale 2012, 4, 6682-91.
29. Liu, Y.; Li, J.; Li, W.; et al. Electrochemical doping induced in situ homo-species for enhanced photoelectrochemical performance on WO3 nanoparticles film photoelectrodes. Electrochim. Acta. 2016, 210, 251-60.
30. Weigel, T.; Schipper, F.; Erickson, E. M.; Susai, F. A.; Markovsky, B.; Aurbach, D. Structural and electrochemical aspects of LiNi0.8Co0.1Mn0.1O2 cathode materials doped by various cations. ACS. Energy. Lett. 2019, 4, 508-16.
31. Tang, L. B.; Liu, Y.; Wei, H.; et al. Boosting cell performance of LiNi0.8Co0.1Mn0.1O2 cathode material via structure design. J. Energy. Chem. 2021, 55, 114-23.
32. Kim, J. H.; Lee, J. S. Elaborately modified BiVO4 photoanodes for solar water splitting. Adv. Mater. 2019, 31, e1806938.
33. Salem, M.; Akir, S.; Ghrib, T.; Daoudi, K.; Gaidi, M. Fe-doping effect on the photoelectrochemical properties enhancement of ZnO films. J. Alloys. Compd. 2016, 685, 107-13.
34. Chakhari, W.; Ben, Naceur., J.; Ben, Taieb., S.; Ben, Assaker., I.; Chtourou, R. Fe-doped TiO2 nanorods with enhanced electrochemical properties as efficient photoanode materials. J. Alloys. Compd. 2017, 708, 862-70.
35. Ling, Y.; Wang, G.; Wheeler, D. A.; Zhang, J. Z.; Li, Y. Sn-doped hematite nanostructures for photoelectrochemical water splitting. Nano. Lett. 2011, 11, 2119-25.
36. Cho, I. S.; Lee, C. H.; Feng, Y.; et al. Codoping titanium dioxide nanowires with tungsten and carbon for enhanced photoelectrochemical performance. Nat. Commun. 2013, 4, 1723.
37. Feng, Y.; Cho, I. S.; Cai, L.; Rao, P. M.; Zheng, X. Sol-flame synthesis of hybrid metal oxide nanowires. Proc. Combust. Inst. 2013, 34, 2179-86.
38. He, Y.; Yan, Q.; Liu, X.; Dong, M.; Yang, J. Effect of annealing on the structure, morphology and photocatalytic activity of surface-fluorinated TiO2 with dominant {001} facets. J. Photochem. Photobiol. A. Chem. 2020, 393, 112400.
39. Trzciński, K.; Zarach, Z.; Szkoda, M.; Nowak, A. P.; Berent, K.; Sawczak, M. Controlling crystallites orientation and facet exposure for enhanced electrochemical properties of polycrystalline MoO3 films. Sci. Rep. 2023, 13, 16668.
40. Wen, X.; Chen, C.; Lu, S.; et al. Vapor transport deposition of antimony selenide thin film solar cells with 7.6% efficiency. Nat. Commun. 2018, 9, 2179.
41. Antonaia, A.; Polichetti, T.; Addonizio, M.; Aprea, S.; Minarini, C.; Rubino, A. Structural and optical characterization of amorphous and crystalline evaporated WO3 layers. Thin. Solid. Films. 1999, 354, 73-81.
42. Feng, C.; Fu, S.; Wang, W.; Zhang, Y.; Bi, Y. High-crystalline and high-aspect-ratio hematite nanotube photoanode for efficient solar water splitting. Appl. Catal. B. Environ. 2019, 257, 117900.
43. Li, Y.; Liu, Z.; Li, J.; Ruan, M.; Guo, Z. An effective strategy of constructing a multi-junction structure by integrating a heterojunction and a homojunction to promote the charge separation and transfer efficiency of WO3. J. Mater. Chem. A. 2020, 8, 6256-67.
44. Li, F.; Li, J.; Li, F.; et al. Facile regrowth of Mg-Fe2O3/P-Fe2O3 homojunction photoelectrode for efficient solar water oxidation. J. Mater. Chem. A. 2018, 6, 13412-8.
45. Jang, J. W.; Du, C.; Ye, Y.; et al. Enabling unassisted solar water splitting by iron oxide and silicon. Nat. Commun. 2015, 6, 7447.
46. Santato, C.; Odziemkowski, M.; Ulmann, M.; Augustynski, J. Crystallographically oriented mesoporous WO3 films: synthesis, characterization, and applications. J. Am. Chem. Soc. 2001, 123, 10639-49.
47. Daniel, M.; Desbat, B.; Lassegues, J.; Gerand, B.; Figlarz, M. Infrared and Raman study of WO3 tungsten trioxides and WO3, xH2O tungsten trioxide tydrates. J. Solid. State. Chem. 1987, 67, 235-47.
48. Moulzolf, S. C.; Ding, S. A.; Lad, R. J. Stoichiometry and microstructure effects on tungsten oxide chemiresistive films. Sens. Actuators. B. Chem. 2001, 77, 375-82.
49. Xia, C.; Li, Y.; Kim, H.; et al. A highly activated iron phosphate over-layer for enhancing photoelectrochemical ammonia decomposition. J. Hazard. Mater. 2021, 408, 124900.
50. Kim, T. W.; Choi, K. S. Nanoporous BiVO4 photoanodes with dual-layer oxygen evolution catalysts for solar water splitting. Science 2014, 343, 990-4.
51. Kalanur, S. S. Structural, optical, band edge and enhanced photoelectrochemical water splitting properties of tin-doped WO3. Catalysts 2019, 9, 456.
52. He, Y.; Zhang, L.; Teng, B.; Fan, M. New application of Z-scheme Ag3PO4/g-C3N4 composite in converting CO2 to fuel. Environ. Sci. Technol. 2015, 49, 649-56.
53. Yan, L.; Dong, G.; Huang, X.; Zhang, Y.; Bi, Y. Unraveling oxygen vacancy changes of WO3 photoanodes for promoting oxygen evolution reaction. Appl. Catal. B. Environ. 2024, 345, 123682.
54. Silva, A. M.; Silva, B. P.; Sales, F. A. M.; et al. Optical absorption and DFT calculations in L -aspartic acid anhydrous crystals: charge carrier effective masses point to semiconducting behavior. Phys. Rev. B. 2012, 86, 195201.
55. Wang, F.; Di Valentin, C.; Pacchioni, G. Electronic and structural properties of WO3: a systematic hybrid DFT study. J. Phys. Chem. C. 2011, 115, 8345-53.
56. Kishore, R.; Cao, X.; Zhang, X.; Bieberle-Hütter, A. Electrochemical water oxidation on WO3 surfaces: a density functional theory study. Catal. Today. 2019, 321-2, 94-9.