REFERENCES
1. Grey, C. P.; Hall, D. S. Prospects for lithium-ion batteries and beyond-a 2030 vision. Nat. Commun. 2020, 11, 6279.
2. Kim, T.; Song, W.; Son, D. Y.; Ono, L. K.; Qi, Y. Lithium-ion batteries: outlook on present, future, and hybridized technologies. J. Mater. Chem. A. 2019, 7, 2942-64.
3. Frith, J. T.; Lacey, M. J.; Ulissi, U. A non-academic perspective on the future of lithium-based batteries. Nat. Commun. 2023, 14, 420.
4. Manthiram, A. A reflection on lithium-ion battery cathode chemistry. Nat. Commun. 2020, 11, 1550.
5. Murdock, B. E.; Toghill, K. E.; Tapia-Ruiz, N. A perspective on the sustainability of cathode materials used in lithium-ion batteries. Adv. Energy. Mater. 2021, 11, 2102028.
6. Stallard, J. C.; Wheatcroft, L.; Booth, S. G.; et al. Mechanical properties of cathode materials for lithium-ion batteries. Joule 2022, 6, 984-1007.
7. Li, W.; Erickson, E. M.; Manthiram, A. High-nickel layered oxide cathodes for lithium-based automotive batteries. Nat. Energy. 2020, 5, 26-34.
8. Wu, F.; Yushin, G. Conversion cathodes for rechargeable lithium and lithium-ion batteries. Energy. Environ. Sci. 2017, 10, 435-59.
9. Yu, S. H.; Feng, X.; Zhang, N.; Seok, J.; Abruña, H. D. Understanding conversion-type electrodes for lithium rechargeable batteries. ACC. Chem. Res. 2018, 51, 273-81.
10. Schipper, F.; Erickson, E. M.; Erk, C.; Shin, J. Y.; Chesneau, F. F.; Aurbach, D. Review - recent advances and remaining challenges for lithium ion battery cathodes: I. Nickel-rich, LiNixCoyMnzO2. J. Electrochem. Soc. 2017, 164, A6220-8.
11. European Commission. Light-duty vehicles. Available from: https://climate.ec.europa.eu/eu-action/transport-decarbonisation/road-transport/light-duty-vehicles_en [Last accessed on 26 Jun 2025].
12. Major policy issued in lithium battery industry to accelerate the elimination of low-end redundant capacity. 2024. Available from: https://www.energytrend.com/news/20240511-46916.html [Last accessed on 4 Jun 2025].
13. EV100 Forum: China’s vision for new energy vehicle industry. 2024. Available from: https://carnewschina.com/2024/03/18/ev100-forum-chinas-vision-for-new-energy-vehicle-industry/ [Last accessed on 4 Jun 2025].
14. Buffie, N. E. The section 45X advanced manufacturing production credit. 2024. Available from: https://www.congress.gov/crs-product/IF12809 [Last accessed on 4 Jun 2025].
15. Yang, H. LG Chem to invest over $3 billion to build U.S. battery cathode plant. 2022. Available from: https://www.reuters.com/business/lg-chem-invest-more-than-3-bln-build-battery-cathode-plant-us-2022-11-21/ [Last accessed on 4 Jun 2025].
16. Ryu, M.; Hong, Y. K.; Lee, S. Y.; Park, J. H. Ultrahigh loading dry-process for solvent-free lithium-ion battery electrode fabrication. Nat. Commun. 2023, 14, 1316.
17. Jin, W.; Song, G.; Yoo, J. K.; Jung, S.; Kim, T. H.; Kim, J. Advancements in dry electrode technologies: towards sustainable and efficient battery manufacturing. ChemElectroChem 2024, 11, e202400288.
18. Oh, H.; Kim, G. S.; Bang, J.; Kim, S.; Jeong, K. M. Dry-processed thick electrode design with a porous conductive agent enabling
19. Xue, W.; Huang, M.; Li, Y.; et al. Ultra-high-voltage Ni-rich layered cathodes in practical Li metal batteries enabled by a sulfonamide-based electrolyte. Nat. Energy. 2021, 6, 495-505.
20. Yu, Z.; Tong, Q.; Cheng, Y.; et al. Enabling 4.6 V LiNi0.6Co0.2Mn0.2O2 cathodes with excellent structural stability: combining surface LiLaO2 self-assembly and subsurface La-pillar engineering. Energy. Mater. 2022, 2, 200037.
21. Cai, D.; Gao, M.; Luo, S.; et al. Scalable thick Ni-rich layered oxide cathode design for high energy/power balanced lithium-ion battery. J. Power. Sources. 2024, 602, 234276.
22. Islam, M. S.; Fisher, C. A. Lithium and sodium battery cathode materials: computational insights into voltage, diffusion and nanostructural properties. Chem. Soc. Rev. 2014, 43, 185-204.
23. Sallas, D. V. D. C.; Kawata, B. A.; Galão, O. F.; et al. The influence of synthesis temperature on the HT-LiCoO2 crystallographic properties. Semin. Ciênc. Exatas. Tecnol. 2019, 40, 115.
24. Entwistle, T.; Sanchez-Perez, E.; Murray, G. J.; Anthonisamy, N.; Cussen, S. A. Co-precipitation synthesis of nickel-rich cathodes for Li-ion batteries. Energy. Rep. 2022, 8, 67-73.
25. Yang, J.; Guan, N.; Xu, C.; et al. The synthesis and modification of LiFePO4 lithium-ion battery cathodes: a mini review. CrystEngComm 2024, 26, 3441-54.
26. Meng, Z.; Ma, X.; Azhari, L.; Hou, J.; Wang, Y. Morphology controlled performance of ternary layered oxide cathodes. Commun. Mater. 2023, 4, 418.
27. Erabhoina, H.; Thelakkat, M. Tuning of composition and morphology of LiFePO4 cathode for applications in all solid-state lithium metal batteries. Sci. Rep. 2022, 12, 5454.
28. Wang, Y.; Shadow Huang, H. Y. An overview of lithium-ion battery cathode materials. MRS. Online. Proc. library. 2011, 1363, 530.
29. Saldaña, G.; San Martín, J. I.; Zamora, I.; Asensio, F. J.; Oñederra, O. Analysis of the current electric battery models for electric vehicle simulation. Energies 2019, 12, 2750.
30. Kim, N.; Shamim, N.; Crawford, A.; et al. Comparison of Li-ion battery chemistries under grid duty cycles. J. Power. Sources. 2022, 546, 231949.
31. Sadeghi, H.; Restuccia, F. Pyrolysis-based modelling of 18650-type lithium-ion battery fires in thermal runaway with LCO, LFP and NMC cathodes. J. Power. Sources. 2024, 603, 234480.
32. Fallah, N.; Fitzpatrick, C. Is shifting from Li-ion NMC to LFP in EVs beneficial for second-life storages in electricity markets? J. Energy. Storage. 2023, 68, 107740.
33. Tim, H.; Christoph, N.; Inés, R. I.; et al. Lithium-ion battery roadmap - industrialization perspectives toward 2030.
34. Sun, Y. K. High-capacity layered cathodes for next-generation electric vehicles. ACS. Energy. Lett. 2019, 4, 1042-4.
35. Jin, W.; Kim, Y.; Jang, H.; et al. Identifying the nanostructure of residual Li in high-Ni cathodes for lithium-ion batteries. J. Mater. Chem. A. 2025, 13, 5599-605.
36. Tian, Q.; Song, R.; Zhang, J.; et al. Formation mechanism and removal strategy of residual lithium compounds on nickel-rich cathode materials. Prog. Nat. Sci. Mater. Int. 2024, 34, 1158-66.
37. Sim, Y. B.; Lee, H.; Mun, J.; Kim, K. J. Modification strategies improving the electrochemical and structural stability of high-Ni cathode materials. J. Energy. Chem. 2024, 96, 185-205.
38. Liu, T.; Yu, L.; Lu, J.; et al. Rational design of mechanically robust Ni-rich cathode materials via concentration gradient strategy. Nat. Commun. 2021, 12, 6024.
39. Yoon, C. S.; Park, K.; Kim, U.; Kang, K. H.; Ryu, H.; Sun, Y. High-energy Ni-rich Li[NixCoyMn1-x-y]O2 cathodes via compositional partitioning for next-generation electric vehicles. Chem. Mater. 2017, 29, 10436-45.
40. Liu, W.; Oh, P.; Liu, X.; et al. Nickel-rich layered lithium transition-metal oxide for high-energy lithium-ion batteries. Angew. Chem. Int. Ed. 2015, 54, 4440-57.
41. Manthiram, A.; Song, B.; Li, W. A perspective on nickel-rich layered oxide cathodes for lithium-ion batteries. Energy. Storage. Mater. 2017, 6, 125-39.
42. Ko, D. S.; Park, J. H.; Yu, B. Y.; et al. Degradation of high-nickel-layered oxide cathodes from surface to bulk: a comprehensive structural, chemical, and electrical analysis. Adv. Energy. Mater. 2020, 10, 2001035.
43. Kim, J.; Lee, H.; Cha, H.; Yoon, M.; Park, M.; Cho, J. Prospect and reality of Ni-rich cathode for commercialization. Adv. Energy. Mater. 2018, 8, 1702028.
44. Kim, J. H.; Ryu, H. H.; Kim, S. J.; Yoon, C. S.; Sun, Y. K. Degradation mechanism of highly Ni-rich Li[NixCoyMn1-x-y]O2 cathodes with x > 0.9. ACS. Appl. Mater. Interfaces. 2019, 11, 30936-42.
45. Xu, C.; Märker, K.; Lee, J.; et al. Bulk fatigue induced by surface reconstruction in layered Ni-rich cathodes for Li-ion batteries. Nat. Mater. 2021, 20, 84-92.
46. Wu, F.; Tian, J.; Su, Y.; et al. Effect of Ni2+ content on lithium/nickel disorder for Ni-rich cathode materials. ACS. Appl. Mater. Interfaces. 2015, 7, 7702-8.
47. He, T.; Chen, L.; Su, Y.; et al. The effects of alkali metal ions with different ionic radii substituting in Li sites on the electrochemical properties of Ni-Rich cathode materials. J. Power. Sources. 2019, 441, 227195.
48. Lin, Q.; Guan, W.; Meng, J.; et al. A new insight into continuous performance decay mechanism of Ni-rich layered oxide cathode for high energy lithium ion batteries. Nano. Energy. 2018, 54, 313-21.
49. Shi, T.; Liu, F.; Liu, W.; et al. Cation mixing regulation of cobalt-free high-nickel layered cathodes enables stable and high-rate lithium-ion batteries. Nano. Energy. 2024, 123, 109410.
50. Wu, F.; Liu, N.; Chen, L.; et al. Improving the reversibility of the H2-H3 phase transitions for layered Ni-rich oxide cathode towards retarded structural transition and enhanced cycle stability. Nano. Energy. 2019, 59, 50-7.
51. Ryu, H. H.; Park, K. J.; Yoon, C. S.; Sun, Y. K. Capacity fading of Ni-rich Li[NixCoyMn1-x-y]O2 (0.6 ≤ x ≤ 0.95) cathodes for high-energy-density lithium-ion batteries: bulk or surface degradation? Chem. Mater. 2018, 30, 1155-63.
52. Cho, D. H.; Jo, C. H.; Cho, W.; et al. Effect of residual lithium compounds on layer Ni-rich Li[Ni0.7Mn0.3]O2. J. Electrochem. Soc. 2014, 161, A920-6.
53. Jo, C. H.; Cho, D. H.; Noh, H. J.; Yashiro, H.; Sun, Y. K.; Myung, S. T. An effective method to reduce residual lithium compounds on Ni-rich Li[Ni0.6Co0.2Mn0.2]O2 active material using a phosphoric acid derived Li3PO4 nanolayer. Nano. Res. 2015, 8, 1464-79.
54. Ross, G.; Watts, J.; Hill, M.; Morrissey, P. Surface modification of poly(vinylidene fluoride) by alkaline treatment1. The degradation mechanism. Polymer 2000, 41, 1685-96.
55. Xiang, J.; Wei, Y.; Zhong, Y.; et al. Building practical high-voltage cathode materials for lithium-ion batteries. Adv. Mater. 2022, 34, e2200912.
56. Zhang, Y.; Katayama, Y.; Tatara, R.; et al. Revealing electrolyte oxidation via carbonate dehydrogenation on Ni-based oxides in Li-ion batteries by in situ Fourier transform infrared spectroscopy. Energy. Environ. Sci. 2020, 13, 183-99.
57. Giordano, L.; Karayaylali, P.; Yu, Y.; et al. Chemical reactivity descriptor for the oxide-electrolyte interface in Li-ion batteries. J. Phys. Chem. Lett. 2017, 8, 3881-7.
58. Yu, Y.; Karayaylali, P.; Katayama, Y.; et al. Coupled LiPF6 decomposition and carbonate dehydrogenation enhanced by highly covalent metal oxides in high-energy Li-ion batteries. J. Phys. Chem. C. 2018, 122, 27368-82.
59. Wu, F.; Dong, J.; Chen, L.; et al. High-voltage and high-safety nickel-rich layered cathode enabled by a self-reconstructive cathode/electrolyte interphase layer. Energy. Storage. Mater. 2021, 41, 495-504.
60. Sharifi-Asl, S.; Lu, J.; Amine, K.; Shahbazian-Yassar, R. Oxygen release degradation in Li-ion battery cathode materials: mechanisms and mitigating approaches. Adv. Energy. Mater. 2019, 9, 1900551.
61. Li, Y.; Liu, X.; Wang, L.; et al. Thermal runaway mechanism of lithium-ion battery with LiNi0.8Mn0.1Co0.1O2 cathode materials. Nano. Energy. 2021, 85, 105878.
62. Gallus, D. R.; Schmitz, R.; Wagner, R.; et al. The influence of different conducting salts on the metal dissolution and capacity fading of NCM cathode material. Electrochim. Acta. 2014, 134, 393-8.
63. Liu, X.; Ren, D.; Hsu, H.; et al. Thermal runaway of lithium-ion batteries without internal short circuit. Joule 2018, 2, 2047-64.
64. Yang, X. G.; Liu, T.; Wang, C. Y. Thermally modulated lithium iron phosphate batteries for mass-market electric vehicles. Nat. Energy. 2021, 6, 176-85.
65. Xia, Y.; Zheng, J.; Wang, C.; Gu, M. Designing principle for Ni-rich cathode materials with high energy density for practical applications. Nano. Energy. 2018, 49, 434-52.
66. Kim, Y.; Kim, M.; Lee, T.; et al. Investigation of mass loading of cathode materials for high energy lithium-ion batteries. Electrochem. Commun. 2023, 147, 107437.
67. Kuang, Y.; Chen, C.; Kirsch, D.; Hu, L. Thick electrode batteries: principles, opportunities, and challenges. Adv. Energy. Mater. 2019, 9, 1901457.
68. Zhou, C. C.; Su, Z.; Gao, X. L.; Cao, R.; Yang, S. C.; Liu, X. H. Ultra-high-energy lithium-ion batteries enabled by aligned structured thick electrode design. Rare. Met. 2022, 41, 14-20.
69. Lombardo, T.; Ngandjong, A. C.; Belhcen, A.; Franco, A. A. Carbon-binder migration: a three-dimensional drying model for lithium-ion battery electrodes. Energy. Storage. Mater. 2021, 43, 337-47.
70. Ogihara, N.; Itou, Y.; Sasaki, T.; Takeuchi, Y. Impedance spectroscopy characterization of porous electrodes under different electrode thickness using a symmetric cell for high-performance lithium-ion batteries. J. Phys. Chem. C. 2015, 119, 4612-9.
71. Park, K. Y.; Park, J. W.; Seong, W. M.; et al. Understanding capacity fading mechanism of thick electrodes for lithium-ion rechargeable batteries. J. Power. Sources. 2020, 468, 228369.
72. Li, S.; Tian, G.; Xiong, R.; et al. Enhanced homogeneity of electrochemical reaction via low tortuosity enabling high-voltage nickel-rich layered oxide thick-electrode. Energy. Storage. Mater. 2022, 46, 443-51.
73. Yan, Z.; Wang, L.; Zhang, H.; He, X. Determination and engineering of Li-ion tortuosity in electrode toward high performance of Li-ion batteries. Adv. Energy. Mater. 2024, 14, 2303206.
74. Abdollahifar, M.; Cavers, H.; Scheffler, S.; Diener, A.; Lippke, M.; Kwade, A. Insights into influencing electrode calendering on the battery performance. Adv. Energy. Mater. 2023, 13, 2300973.
75. Lu, X.; Daemi, S. R.; Bertei, A.; et al. Microstructural evolution of battery electrodes during calendering. Joule 2020, 4, 2746-68.
76. Günther, T.; Schreiner, D.; Metkar, A.; Meyer, C.; Kwade, A.; Reinhart, G. Classification of calendering-induced electrode defects and their influence on subsequent processes of lithium-ion battery production. Energy. Technol. 2020, 8, 1900026.
77. Cha, H.; Kim, J.; Lee, H.; et al. Boosting reaction homogeneity in high-energy lithium-ion battery cathode materials. Adv. Mater. 2020, 32, e2003040.
78. Zhang, J.; Sun, J.; Huang, H.; Ji, C.; Yan, M.; Yuan, Z. Deformation and fracture mechanisms in the calendering process of lithium-ion battery electrodes. Appl. Energy. 2024, 373, 123900.
79. Klein, S.; Bärmann, P.; Beuse, T.; et al. Exploiting the degradation mechanism of NCM523 graphite lithium-ion full cells operated at high voltage. ChemSusChem 2021, 14, 595-613.
80. Song, Y.; Wang, L.; Sheng, L.; et al. The significance of mitigating crosstalk in lithium-ion batteries: a review. Energy. Environ. Sci. 2023, 16, 1943-63.
81. Tsunekawa, H.; Tanimoto, A. S.; Marubayashi, R.; Fujita, M.; Kifune, K.; Sano, M. Capacity fading of graphite electrodes due to the deposition of manganese ions on them in Li-ion batteries. J. Electrochem. Soc. 2002, 149, A1326.
82. Zheng, H.; Sun, Q.; Liu, G.; Song, X.; Battaglia, V. S. Correlation between dissolution behavior and electrochemical cycling performance for LiNi1/3Co1/3Mn1/3O2-based cells. J. Power. Sources. 2012, 207, 134-40.
83. Komaba, S.; Kumagai, N.; Kataoka, Y. Influence of manganese(II), cobalt(II), and nickel(II) additives in electrolyte on performance of graphite anode for lithium-ion batteries. Electrochim. Acta. 2002, 47, 1229-39.
84. Kim, J.; Ma, H.; Cha, H.; et al. A highly stabilized nickel-rich cathode material by nanoscale epitaxy control for high-energy lithium-ion batteries. Energy. Environ. Sci. 2018, 11, 1449-59.
85. Zhang, X.; Cui, Z.; Manthiram, A. Insights into the crossover effects in cells with high-nickel layered oxide cathodes and silicon/graphite composite anodes. Adv. Energy. Mater. 2022, 12, 2103611.
86. Moon, J.; Lee, H. C.; Jung, H.; et al. Interplay between electrochemical reactions and mechanical responses in silicon-graphite anodes and its impact on degradation. Nat. Commun. 2021, 12, 2714.
87. Kim, M.; Yang, Z.; Trask, S. E.; Bloom, I. Understanding the effect of cathode composition on the interface and crosstalk in NMC/Si full cells. ACS. Appl. Mater. Interfaces. 2022, 14, 15103-11.
88. Zhang, X.; Wang, A.; Liu, X.; Luo, J. Dendrites in lithium metal anodes: suppression, regulation, and elimination. Acc. Chem. Res. 2019, 52, 3223-32.
89. Yamaki, J.; Tobishima, S.; Hayashi, K.; Keiichi, Saito.; Nemoto, Y.; Arakawa, M. A consideration of the morphology of electrochemically deposited lithium in an organic electrolyte. J. Power. Sources. 1998, 74, 219-27.
90. Langdon, J.; Manthiram, A. Crossover effects in batteries with high-nickel cathodes and lithium-metal anodes. Adv. Funct. Mater. 2021, 31, 2010267.
91. Langdon, J.; Manthiram, A. Crossover effects in lithium-metal batteries with a localized high concentration electrolyte and high-nickel cathodes. Adv. Mater. 2022, 34, e2205188.
92. Li, F.; Liu, Z.; Liao, C.; Xu, X.; Zhu, M.; Liu, J. Gradient boracic polyanion doping-derived surface lattice modulation of high-voltage Ni-rich layered cathodes for high-energy-density Li-ion batteries. ACS. Energy. Lett. 2023, 8, 4903-14.
93. Xu, C.; Reeves, P. J.; Jacquet, Q.; Grey, C. P. Phase behavior during electrochemical cycling of Ni-rich cathode materials for Li-ion batteries. Adv. Energy. Mater. 2021, 11, 2003404.
94. Jiang, Z.; Yang, T.; Li, C.; et al. Synergistic additives enabling stable cycling of ether electrolyte in 4.4 V Ni-rich/Li metal batteries. Adv. Funct. Mater. 2023, 33, 2306868.
95. Zhang, J.; Zhang, H.; Deng, L.; et al. An additive-enabled ether-based electrolyte to realize stable cycling of high-voltage anode-free lithium metal batteries. Energy. Storage. Mater. 2023, 54, 450-60.
96. Ren, X.; Zou, L.; Jiao, S.; et al. High-concentration ether electrolytes for stable high-voltage lithium metal batteries. ACS. Energy. Lett. 2019, 4, 896-902.
97. Li, Z.; Rao, H.; Atwi, R.; et al. Non-polar ether-based electrolyte solutions for stable high-voltage non-aqueous lithium metal batteries. Nat. Commun. 2023, 14, 868.
98. Mao, M.; Gong, L.; Wang, X.; et al. Electrolyte design combining fluoro- with cyano-substitution solvents for anode-free Li metal batteries. Proc. Natl. Acad. Sci. USA. 2024, 121, e2316212121.
99. Günter, F. J.; Wassiliadis, N. State of the art of lithium-ion pouch cells in automotive applications: cell teardown and characterization. J. Electrochem. Soc. 2022, 169, 030515.
100. Embleton, T. J.; Choi, J. H.; Won, S.; et al. High-energy density ultra-thick drying-free Ni-rich cathode electrodes for application in Lithium-ion batteries. Energy. Storage. Mater. 2024, 71, 103542.
101. Kim, J. H.; Lee, K. M.; Kim, J. W.; et al. Regulating electrostatic phenomena by cationic polymer binder for scalable high-areal-capacity Li battery electrodes. Nat. Commun. 2023, 14, 5721.
102. Kim, J. H.; Kim, J. M.; Cho, S. K.; Kim, N. Y.; Lee, S. Y. Redox-homogeneous, gel electrolyte-embedded high-mass-loading cathodes for high-energy lithium metal batteries. Nat. Commun. 2022, 13, 2541.
103. Li, J.; Fleetwood, J.; Hawley, W. B.; Kays, W. From materials to cell: state-of-the-art and prospective technologies for lithium-ion battery electrode processing. Chem. Rev. 2022, 122, 903-56.
104. Yao, W.; Chouchane, M.; Li, W.; et al. A 5 V-class cobalt-free battery cathode with high loading enabled by dry coating. Energy. Environ. Sci. 2023, 16, 1620-30.
105. Kim, J.; Park, K.; Kim, M.; et al. 10 mAh cm-2 cathode by roll-to-roll process for low cost and high energy density Li-ion batteries. Adv. Energy. Mater. 2024, 14, 2303455.
106. Klein, S.; Harte, P.; van Wickeren, S.; et al. Re-evaluating common electrolyte additives for high-voltage lithium ion batteries. Cell. Rep. Phys. Sci. 2021, 2, 100521.
107. Klein, S.; Wrogemann, J. M.; van Wickeren, S.; et al. Understanding the role of commercial separators and their reactivity toward LiPF6 on the failure mechanism of high-voltage NCM523||graphite lithium ion cells. Adv. Energy. Mater. 2022, 12, 2102599.
108. Klein, S.; van Wickeren, S.; Röser, S.; et al. Understanding the outstanding high-voltage performance of NCM523||graphite lithium ion cells after elimination of ethylene carbonate solvent from conventional electrolyte. Adv. Energy. Mater. 2021, 11, 2003738.
109. Park, S.; Jeong, S. Y.; Lee, T. K.; et al. Replacing conventional battery electrolyte additives with dioxolone derivatives for high-energy-density lithium-ion batteries. Nat. Commun. 2021, 12, 838.
110. Mao, M.; Ji, X.; Wang, Q.; et al. Anion-enrichment interface enables high-voltage anode-free lithium metal batteries. Nat. Commun. 2023, 14, 1082.
111. Li, N.; Gao, K.; Fan, K.; et al. Customization nanoscale interfacial solvation structure for low-temperature lithium metal batteries. Energy. Environ. Sci. 2024, 17, 5468-79.
112. Lee, H.; An, H.; Chang, H.; et al. Boosting interfacial kinetics in extremely fast rechargeable Li-ion batteries with linear carbonate-based, LiPF6-concentrated electrolyte. Energy. Storage. Mater. 2023, 63, 102995.
113. Song, G.; Hwang, C.; Song, W. J.; et al. Breathable artificial interphase for dendrite-free and chemo-resistive lithium metal anode. Small 2022, 18, e2105724.