REFERENCES

1. Gielen, D.; Boshell, F.; Saygin, D. Climate and energy challenges for materials science. Nat. Mater. 2016, 15, 117-20.

2. Chu, S.; Majumdar, A. Opportunities and challenges for a sustainable energy future. Nature 2012, 488, 294-303.

3. Twaha, S.; Zhu, J.; Yan, Y.; Li, B. A comprehensive review of thermoelectric technology: Materials, applications, modelling and performance improvement. Renew. Sustain. Energy. Rev. 2016, 65, 698-726.

4. Jaziri, N.; Boughamoura, A.; Müller, J.; Mezghani, B.; Tounsi, F.; Ismail, M. A comprehensive review of thermoelectric generators: technologies and common applications. Energy. Rep. 2020, 6, 264-87.

5. O’brien, R.; Ambrosi, R.; Bannister, N.; Howe, S.; Atkinson, H. Safe radioisotope thermoelectric generators and heat sources for space applications. J. Nucl. Mater. 2008, 377, 506-21.

6. Yang, L.; Chen, Z.; Dargusch, M. S.; Zou, J. High performance thermoelectric materials: progress and their applications. Adv. Energy. Mater. 2018, 8, 1701797.

7. Snyder, G. J.; Toberer, E. S. Complex thermoelectric materials. Nat. Mater. 2008, 7, 105-14.

8. Wei, J.; Yang, L.; Ma, Z.; et al. Review of current high-ZT thermoelectric materials. J. Mater. Sci. 2020, 55, 12642-704.

9. Jia, N.; Cao, J.; Tan, X. Y.; et al. Thermoelectric materials and transport physics. Mater. Today. Phys. 2021, 21, 100519.

10. Pei, Y.; Shi, X.; LaLonde, A.; Wang, H.; Chen, L.; Snyder, G. J. Convergence of electronic bands for high performance bulk thermoelectrics. Nature 2011, 473, 66-9.

11. Tang, Y.; Gibbs, Z. M.; Agapito, L. A.; et al. Convergence of multi-valley bands as the electronic origin of high thermoelectric performance in CoSb3 skutterudites. Nat. Mater. 2015, 14, 1223-8.

12. Yan, X.; Liu, W.; Wang, H.; et al. Stronger phonon scattering by larger differences in atomic mass and size in p-type half-Heuslers Hf1-xTixCoSb0.8Sn0.2. Energy. Environ. Sci. 2012, 5, 7543-8.

13. Liu, Z.; Shuai, J.; Mao, J.; et al. Effects of antimony content in MgAg0.97Sbx on output power and energy conversion efficiency. Acta. Mater. 2016, 102, 17-23.

14. Back, S. Y.; Meikle, S.; Mori, T. Comprehensive study of α-MgAgSb: microstructure, carrier transport properties, and thermoelectric performance under ball milling techniques. J. Mater. Sci. Technol. 2025, 227, 57-66.

15. Imasato, K.; Kang, S. D.; Ohno, S.; Snyder, G. J. Band engineering in Mg3Sb2 by alloying with Mg3Bi2 for enhanced thermoelectric performance. Mater. Horiz. 2018, 5, 59-64.

16. Zhang, J.; Song, L.; Sist, M.; Tolborg, K.; Iversen, B. B. Chemical bonding origin of the unexpected isotropic physical properties in thermoelectric Mg3Sb2 and related materials. Nat. Commun. 2018, 9, 4716.

17. Dasgupta, T.; Stiewe, C.; de Boor, J.; Müller, E. Influence of power factor enhancement on the thermoelectric figure of merit in Mg2Si0.4Sn0.6 based materials. Phys. Status. Solidi. (A). 2014, 211, 1250-4.

18. Liu, W.; Zhang, Q.; Yin, K.; et al. High figure of merit and thermoelectric properties of Bi-doped Mg2Si0.4Sn0.6 solid solutions. J. Solid. State. Chem. 2013, 203, 333-9.

19. Leblanc, S.; Yee, S. K.; Scullin, M. L.; Dames, C.; Goodson, K. E. Material and manufacturing cost considerations for thermoelectrics. Renew. Sustain. Energy. Rev. 2014, 32, 313-27.

20. Gaultois, M. W.; Sparks, T. D.; Borg, C. K. H.; Seshadri, R.; Bonificio, W. D.; Clarke, D. R. Data-driven review of thermoelectric materials: performance and resource considerations. Chem. Mater. 2013, 25, 2911-20.

21. Liu, X.; Zhu, T.; Wang, H.; et al. Low electron scattering potentials in high performance Mg2Si0.45Sn0.55 based thermoelectric solid solutions with band convergence. Adv. Energy. Mater. 2013, 3, 1238-44.

22. Liu, W.; Tan, X.; Yin, K.; et al. Convergence of conduction bands as a means of enhancing thermoelectric performance of n-type Mg2Si1-xSnx solid solutions. Phys. Rev. Lett. 2012, 108, 166601.

23. Kaibe, H.; Aoyama, I.; Mukoujima, M.; et al. Development of thermoelectric generating stacked modules aiming for 15% of conversion efficiency. ICT. 2005. 24th. International. Conference. on. Thermoelectrics,. 2005,. , pp. 242-7.

24. Camut, J.; Müller, E.; de Boor, J. Analyzing the performance of thermoelectric generators with inhomogeneous legs: coupled material-device modelling for Mg2X-based TEG prototypes. Energies 2023, 16, 3666.

25. Wieder, A.; Camut, J.; Duparchy, A.; et al. High-performance tellurium-free thermoelectric module for moderate temperatures using α-MgAgSb/Mg2(Si,Sn). Mater. Today. Energy. 2023, 38, 101420.

26. Skomedal, G.; Burkov, A.; Samunin, A.; Haugsrud, R.; Middleton, H. High temperature oxidation of Mg2(Si-Sn). Corros. Sci. 2016, 111, 325-33.

27. Duparchy, A.; Deshpande, R.; Sankhla, A.; et al. Instability mechanism in thermoelectric Mg2(Si,Sn) and the role of Mg diffusion at room temperature. Small. Sci. 2025, 5, 2300298.

28. Kato, D.; Iwasaki, K.; Yoshino, M.; Yamada, T.; Nagasaki, T. Significant effect of Mg-pressure-controlled annealing: non-stoichiometry and thermoelectric properties of Mg2-δSi1-xSbx. Phys. Chem. Chem. Phys. 2018, 20, 25939-50.

29. Kato, D.; Iwasaki, K. Mg-pressure-controlled annealing for tuning Mg content and thermoelectric properties of Mg2-δ(Si0.5Sn0.5)1-xSbx. J. Alloys. Compd. 2021, 856, 157351.

30. Farahi, N.; Stiewe, C.; Truong, D. Y. N.; de Boor, J.; Müller, E. High efficiency Mg2(Si,Sn)-based thermoelectric materials: scale-up synthesis, functional homogeneity, and thermal stability. RSC. Adv. 2019, 9, 23021-8.

31. Sankhla, A.; Patil, A.; Kamila, H.; et al. Mechanical alloying of optimized Mg2(Si,Sn) solid solutions: understanding phase evolution and tuning synthesis parameters for thermoelectric applications. ACS. Appl. Energy. Mater. 2018, 1, 531-42.

32. Liu, W.; Tang, X.; Li, H.; Sharp, J.; Zhou, X.; Uher, C. Optimized thermoelectric properties of Sb-doped Mg2(1+Z)Si0.5-ySn0.5Sby through adjustment of the Mg content. Chem. Mater. 2011, 23, 5256-63.

33. Macario, L. R.; Cheng, X.; Ramirez, D.; Mori, T.; Kleinke, H. Thermoelectric properties of Bi-doped magnesium silicide stannides. ACS. Appl. Mater. Interfaces. 2018, 10, 40585-91.

34. Sankhla, A.; Kamila, H.; Naithani, H.; Mueller, E.; de Boor, J. On the role of Mg content in Mg2(Si,Sn): assessing its impact on electronic transport and estimating the phase width by in situ characterization and modelling. Mater. Today. Phys. 2021, 21, 100471.

35. Ghosh, S.; Abdelbaky, M.; Mertin, W.; Müller, E.; de Boor, J. Surface degradation of Mg2X-based composites at room temperature: assessing grain boundary and bulk diffusion using atomic force microscopy and scanning electron microscopy. ACS. Appl. Mater. Interfaces. 2024, 16, 48619-28.

36. Sankhla, A. Unraveling the interplay between composition, electronic band structure and electronic transport properties in n-type Mg2X (X: Si, Sn) materials. Ph.D. Dissertation, Justus Liebig University Giessen, Giessen, 2024. https://jlupub.ub.uni-giessen.de/items/f291cf47-c09c-4c5d-b7c3-864e7a58abd0 (accessed 2025-06-05).

37. Liu, Z.; Geng, H.; Mao, J.; et al. Understanding and manipulating the intrinsic point defect in α-MgAgSb for higher thermoelectric performance. J. Mater. Chem. A. 2016, 4, 16834-40.

38. Ryu, B.; Choi, E.; Park, S.; et al. Native point defects and low p-doping efficiency in Mg2(Si,Sn) solid solutions: a hybrid-density functional study. J. Alloys. Compd. 2021, 853, 157145.

39. Wood, M.; Kuo, J. J.; Imasato, K.; Snyder, G. J. Improvement of low-temperature zT in a Mg3Sb2-Mg3Bi2 solid solution via Mg-vapor annealing. Adv. Mater. 2019, 31, e1902337.

40. Imasato, K.; Wood, M.; Anand, S.; Kuo, J. J.; Snyder, G. J. Understanding the high thermoelectric performance of Mg3Sb2-Mg3Bi2 alloys. Adv. Energy. Sustain. Res. 2022, 3, 2100208.

41. Ohno, S.; Imasato, K.; Anand, S.; et al. Phase boundary mapping to obtain n-type Mg3Sb2-based thermoelectrics. Joule 2018, 2, 141-54.

42. Adekoya, A. H.; Snyder, G. J. Thermodynamic modeling of Bi2Te3 in the defect energy formalism. Mater. Today. Electron. 2024, 9, 100109.

43. Liu, Z.; Sato, N.; Gao, W.; et al. Demonstration of ultrahigh thermoelectric efficiency of ~7.3% in Mg3Sb2/MgAgSb module for low-temperature energy harvesting. Joule 2021, 5, 1196-208.

44. Ying, P.; Villoro, R. B.; Bahrami, A.; et al. Performance degradation and protective effects of atomic layer deposition for Mg-based thermoelectric modules. Adv. Funct. Mater. 2024, 34, 2406473.

45. Kamila, H.; Ryu, B.; Ayachi, S.; Sankhla, A.; Mueller, E.; de Boor, J. Understanding the dopability of p-type Mg2(Si,Sn) by relating hybrid-density functional calculation results to experimental data. J. Phys. Energy. 2022, 4, 035001.

46. Kamila, H.; Sankhla, A.; Yasseri, M.; et al. Synthesis of p-type Mg2Si1-xSnx with x = 0-1 and optimization of the synthesis parameters. Mater. Today. Proc. 2019, 8, 546-55.

47. Nolas, G. S.; Wang, D.; Beekman, M. Transport properties of polycrystalline Mg2Si1-ySby (0≤y<0.4). Phys. Rev. B. 2007, 76, 235204.

48. Dasgupta, T.; Stiewe, C.; Hassdorf, R.; Zhou, A. J.; Boettcher, L.; Mueller, E. Effect of vacancies on the thermoelectric properties of Mg2Si1-xSbx (0≤x≤0.1). Phys. Rev. B. 2011, 83, 235207.

49. Hwang, J. D.; Wang, W. J. Application of ICP-AES to analysis of solutions. Appl. Spectrosc. Rev. 1995, 30, 231-350.

50. Potts, P. J. Inductively coupled plasma-atomic emission spectrometry. In A handbook of a handbook of silicate rock analysis, 1th ed.; Springer Book Archive, Springer, 1987;pp 153-97.

51. Zachariadis, G. Inductively coupled plasma atomic emission spectrometry : a model multi-elemental technique for modern analytical laboratory; Nova Science Publishers, 2012. https://ikee.lib.auth.gr/record/271630 (accessed 2025-06-05).

52. Ziolkowski, P.; Karpinski, G.; Platzek, D.; Stiewe, C.; Muller, E. Application overview of the potential seebeck microscope. In 2006 25th International Conference on Thermoelectrics, Vienna, Austria, IEEE, 2006; pp 684-8.

53. Platzek, D.; Karpinski, G.; Stiewe, C.; Ziolkowski, P.; Drasar, C.; Muller, E. Potential-Seebeck-microprobe (PSM): measuring the spatial resolution of the Seebeck coefficient and the electric potential. In ICT 2005. 24th International Conference on Thermoelectrics, 2005, Clemson, SC, USA, IEEE, 2005; pp 13-6.

54. de Boor, J.; Stiewe, C.; Ziolkowski, P.; et al. High-Temperature measurement of seebeck coefficient and electrical conductivity. J. Electron. Mater. 2013, 42, 1711-8.

55. Boor J, Müller E. Data analysis for seebeck coefficient measurements. Rev. Sci. Instrum. 2013, 84, 065102.

56. Parzer, M. Extending the phase space of thermoelectric full-Heusler compounds. Ph.D. Dissertation, Technische Universität Wien, 2024.

57. Sankhla, A.; Kamila, H.; Kelm, K.; Mueller, E.; de Boor, J. Analyzing thermoelectric transport in n-type Mg2Si0.4Sn0.6 and correlation with microstructural effects: an insight on the role of Mg. Acta. Mater. 2020, 199, 85-95.

58. Snyder, G. J.; Snyder, A. H.; Wood, M.; Gurunathan, R.; Snyder, B. H.; Niu, C. Weighted mobility. Adv. Mater. 2020, 32, e2001537.

59. Naithani, H.; Müller, E.; de Boor, J. Uncertainty analysis of microscopic parameters obtained from the single parabolic band (SPB) modelling of thermoelectrics materials. In Proceedings of the 41st International and 7th Asian Conference on Thermoelectrics (ICT/ACT 2025), Sendai, Japan, 2025; Paper 16-A-O-023. https://ict2025.jp/item/ICT2025_Oral_abstract_protected.pdf (accessed 2025-07-09).

60. Castillo-hernandez, G.; Yasseri, M.; Klobes, B.; Ayachi, S.; Müller, E.; de Boor, J. Room and high temperature mechanical properties of Mg2Si, Mg2Sn and their solid solutions. J. Alloys. Compd. 2020, 845, 156205.

61. Assahsahi, I.; Popescu, B.; El, Bouayadi. R.; Zejli, D.; Enculescu, M.; Galatanu, A. Thermoelectric properties of p-type Mg2Si0.3Sn0.7 doped with silver and gallium. J. Alloys. Compd. 2023, 944, 169270.

62. Yasseri, M.; Sankhla, A.; Kamila, H.; et al. Solid solution formation in Mg2(Si,Sn) and shape of the miscibility gap. Acta. Mater. 2020, 185, 80-8.

63. Yasseri, M.; Mitra, K.; Sankhla, A.; de Boor, J.; Müller, E. Influence of Mg loss on the phase stability in Mg2X (X=Si, Sn) and its correlation with coherency strain. Acta. Mater. 2021, 208, 116737.

64. Ai, X.; Xue, W.; Giebeler, L.; et al. Interstitial defect modulation promotes thermoelectric properties of p-Type HfNiSn. Adv. Energy. Mater. 2024, 14, 2401345.

65. He, S.; Bahrami, A.; Ying, P.; et al. Improving the thermoelectric performance of ZrNi(In,Sb)-based double half-Heusler compounds. J. Mater. Chem. A. 2022, 10, 13476-83.

66. Edler, F.; Huang, K. Analysis of the “cold finger effect” in measuring the Seebeck coefficient. Meas. Sci. Technol. 2020, 32, 035014.

67. Kato, D.; Iwasaki, K.; Yoshino, M.; Yamada, T.; Nagasaki, T. Control of Mg content and carrier concentration via post annealing under different Mg partial pressures for Sb-doped Mg2Si thermoelectric material. J. Solid. State. Chem. 2018, 258, 93-8.

68. Zhang, L.; Chen, X.; Tang, Y.; et al. Thermal stability of Mg2Si0.4Sn0.6 in inert gases and atomic-layer-deposited Al2O3 thin film as a protective coating. J. Mater. Chem. A. 2016, 4, 17726-31.

69. Nieroda, P.; Mars, K.; Nieroda, J.; et al. New high temperature amorphous protective coatings for Mg2Si thermoelectric material. Ceram. Int. 2019, 45, 10230-5.

70. Yin, K.; Zhang, Q.; Zheng, Y.; Su, X.; Tang, X.; Uher, C. Thermal stability of Mg2Si0.3Sn0.7 under different heat treatment conditions. J. Mater. Chem. C. 2015, 3, 10381-7.

71. Deshpande, R.; Bahrami, A.; Kreps, F.; et al. On the origin of temperature induced performance degradation of Cu-contacted Mg2X-based (X = Si, Sn) thermoelectric materials. ACS. Appl. Mater. Interfaces. 2025, 17, 28777-88.

72. Deshpande, R.; Bahrami, A.; Kreps, F.; et al. On the origin of temperature induced performance degradation of Cu-contacted Mg2X-based (X=Si, Sn) thermoelectric materials. ACS. Appl. Mater. Interfaces. 2025, 17, 28777-88.

73. Orenstein, R.; Male, J. P.; Toriyama, M.; Anand, S.; Snyder, G. J. Using phase boundary mapping to resolve discrepancies in the Mg2Si-Mg2Sn miscibility gap. J. Mater. Chem. A. 2021, 9, 7208-15.

74. Yi, S.; Attari, V.; Jeong, M.; et al. Strain-induced suppression of the miscibility gap in nanostructured Mg2Si-Mg2Sn solid solutions. J. Mater. Chem. A. 2018, 6, 17559-70.

75. Ayachi, S.; Deshpande, R.; Ponnusamy, P.; et al. On the relevance of point defects for the selection of contacting electrodes: Ag as an example for Mg2(Si,Sn)-based thermoelectric generators. Mater. Today. Phys. 2021, 16, 100309.

76. Liu, W.; Chi, H.; Sun, H.; et al. Advanced thermoelectrics governed by a single parabolic band: Mg2Si0.3Sn0.7, a canonical example. Phys. Chem. Chem. Phys. 2014, 16, 6893-7.

77. May, A. F.; Snyder, G. J. Materials, preparation, and characterization in thermoelectrics; Rowe DM, Ed.; CRC Press: 2012.

78. Harrison, J. W.; Hauser, J. R. Alloy scattering in ternary III-V compounds. Phys. Rev. B. 1976, 13, 5347-50.

79. Wang, H.; Lalonde, A. D.; Pei, Y.; Snyder, G. J. The criteria for beneficial disorder in thermoelectric solid solutions. Adv. Funct. Mater. 2013, 23, 1586-96.

80. Bardeen, J.; Shockley, W. Deformation potentials and mobilities in non-polar crystals. Phys. Rev. 1950, 80, 72-80.

81. de Boor, J.; Dasgupta, T.; Kolb, H.; Compere, C.; Kelm, K.; Mueller, E. Microstructural effects on thermoelectric efficiency: a case study on magnesium silicide. Acta. Mater. 2014, 77, 68-75.

82. Kuo, J. J.; Kang, S. D.; Imasato, K.; et al. Grain boundary dominated charge transport in Mg3Sb2-based compounds. Energy. Environ. Sci. 2018, 11, 429-34.

83. Kuo, J. J.; Yu, Y.; Kang, S. D.; Cojocaru-mirédin, O.; Wuttig, M.; Snyder, G. J. Mg deficiency in grain boundaries of n-type Mg3Sb2 identified by atom probe tomography. Adv. Mater. Interfaces. 2019, 6, 1900429.

84. Seto, J. Y. W. The electrical properties of polycrystalline silicon films. J. Appl. Phys. 1975, 46, 5247-54.

85. Agrawal, B.; de Boor, J.; Dasgupta, T. A multi-band refinement technique for analyzing electronic band structure of thermoelectric materials. Cell. Rep. Phys. Sci. 2024, 5, 101781.

86. de Boor, J.; Compere, C.; Dasgupta, T.; et al. Fabrication parameters for optimized thermoelectric Mg2Si. J. Mater. Sci. 2014, 49, 3196-204.

87. Fistul’, V. I. Transport phenomena in heavily doped semiconductors, In Heavily doped semiconductors, vol 1; Springer, Boston, MA, 1969;pp 77-205.

Energy Materials
ISSN 2770-5900 (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/