REFERENCES
1. He, J.; Tritt, T. M. Advances in thermoelectric materials research: looking back and moving forward. Science 2017, 357, eaak9997.
2. Yang, L.; Chen, Z.; Dargusch, M. S.; Zou, J. High performance thermoelectric materials: progress and their applications. Adv. Energy. Mater. 2018, 8, 1701797.
3. Cao, T.; Shi, X.; Li, M.; et al. Advances in bismuth-telluride-based thermoelectric devices: progress and challenges. eScience 2023, 3, 100122.
4. Goldsmid, H. J. Bismuth telluride and its alloys as materials for thermoelectric generation. Materials 2014, 7, 2577-92.
5. Mamur, H.; Bhuiyan, M.; Korkmaz, F.; Nil, M. A review on bismuth telluride (Bi2Te3) nanostructure for thermoelectric applications. Renew. Sustain. Energy. Rev. 2018, 82, 4159-69.
6. Zharikov, E. V. Problems and recent advances in melt crystal growth technology. J. Cryst. Growth. 2012, 360, 146-54.
7. Hegde, G. S.; Prabhu, A. N. A review on doped/composite bismuth chalcogenide compounds for thermoelectric device applications: various synthesis techniques and challenges. J. Electron. Mater. 2022, 51, 2014-42.
8. Xie, W.; Tang, X.; Yan, Y.; Zhang, Q.; Tritt, T. M. Unique nanostructures and enhanced thermoelectric performance of melt-spun BiSbTe alloys. Appl. Phys. Lett. 2009, 94, 102111.
9. Zheng, Y.; Xie, H.; Zhang, Q.; et al. Unraveling the critical role of melt-spinning atmosphere in enhancing the thermoelectric performance of p-type Bi0.52Sb1.48Te3 alloys. ACS. Appl. Mater. Interfaces. 2020, 12, 36186-95.
10. Han, L.; Spangsdorf, S. H.; Nong, N. V.; et al. Effects of spark plasma sintering conditions on the anisotropic thermoelectric properties of bismuth antimony telluride. RSC. Adv. 2016, 6, 59565-73.
11. Shin, W. H.; Yoon, J. S.; Jeong, M.; et al. Microstructure analysis and thermoelectric properties of melt-spun Bi-Sb-Te compounds. Crystals 2017, 7, 180.
12. Zhang, Q.; Zhang, Q.; Chen, S.; et al. Suppression of grain growth by additive in nanostructured p-type bismuth antimony tellurides. Nano. Energy. 2012, 1, 183-9.
13. Qin, H.; Qu, W.; Zhang, Y.; et al. Nanotwins strengthening high thermoelectric performance bismuth antimony telluride alloys. Adv. Sci. 2022, 9, e2200432.
14. Poudel, B.; Hao, Q.; Ma, Y.; et al. High-thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys. Science 2008, 320, 634-8.
15. Xie, W.; Wang, S.; Zhu, S.; et al. High performance Bi2Te3 nanocomposites prepared by single-element-melt-spinning spark-plasma sintering. J. Mater. Sci. 2013, 48, 2745-60.
16. Hu, L.; Zhu, T.; Wang, Y.; Xie, H.; Xu, Z.; Zhao, X. Shifting up the optimum figure of merit of p-type bismuth telluride-based thermoelectric materials for power generation by suppressing intrinsic conduction. NPG. Asia. Mater. 2014, 2, e88.
17. Xie, W.; Zhu, B.; Wu, X.; Cao, W.; Wang, Z. Synergistic strategy for enhancing the thermoelectric properties of Bi0.5Sb1.5Te3 with excess Te through low-temperature liquid phase sintering method. J. Eur. Ceram. Soc. 2024, 44, 5765-73.
18. Kim, E. B.; Dharmaiah, P.; Lee, K.; et al. Enhanced thermoelectric properties of Bi0.5Sb1.5Te3 composites with in-situ formed senarmontite Sb2O3 nanophase. J. Alloys. Compd. 2019, 777, 703-11.
19. Kim, D. H.; Kim, T.; Lee, S. W.; Kim, H. S.; Shin, W. H.; Kim, S. I. Investigation of phase segregation in p-Type Bi0.5Sb1.5Te3 thermoelectric alloys by in situ melt spinning to determine possible carrier filtering effect. Materials 2021, 14, 7567.
20. Kim, H.; Kim, T.; An, J.; Kim, D.; Jeon, J. H.; Kim, S. Segregation of NiTe2 and NbTe2 in p-type thermoelectric Bi0.5Sb1.5Te3 alloys for carrier energy filtering effect by melt spinning. Appl. Sci. 2021, 11, 910.
21. Dwivedi, S. P.; Saxena, A.; Sharma, S.; et al. Effect of ball-milling process parameters on mechanical properties of Al/Al2O3/collagen powder composite using statistical approach. J. Mater. Res. Technol. 2021, 15, 2918-32.
22. Shang, X.; Wang, X.; Chen, S. Effects of ball milling processing conditions and alloy components on the synthesis of Cu-Nb and Cu-Mo alloys. Materials 2019, 12, 1224.
23. El-Eskandarany, M.; Mahday, A. A.; Ahmed, H.; Amer, A. Synthesis and characterizations of ball-milled nanocrystalline WC and nanocomposite WC-Co powders and subsequent consolidations. J. Alloys. Compd. 2000, 312, 315-25.
24. Yang, Y.; Sun, W.; Fang, Q.; Yuan, Z. Effect of ball milling nanocrystallization on hydrogen storage performance of Mg95Ni2Pr3 hydrogen storage alloy. Mater. Today. Commun. 2024, 40, 109380.
25. Ciftci, N.; Ellendt, N.; Coulthard, G.; Soares, Barreto., E.; Mädler, L.; Uhlenwinkel, V. Novel cooling rate correlations in molten metal gas atomization. Metall. Mater. Trans. B. 2019, 50, 666-77.
26. Arun, S.; Radhika, N.; Saleh, B. Advances in vacuum arc melting for high entropy alloys: a review. Vacuum 2024, 226, 113314.
27. Wen, J.; Cheng, J.; Min, X.; Huang, Y.; Liu, Y. Strengthened solid solution and homogenized eutectic structure of Al-based multi-component alloy via electromagnetic stirring. J. Alloys. Compd. 2024, 1002, 175537.
28. Vishwakarma, A.; Chauhan, N. S.; Bhardwaj, R.; et al. Melt-spun SiGe nano-alloys: microstructural engineering towards high thermoelectric efficiency. J. Electron. Mater. 2021, 50, 364-74.
29. Du, B.; Wu, J.; Lai, X.; et al. Fabrication and electrical properties of Bi2-xSbxTe3 ternary nanopillars array films. Ceram. Int. 2019, 45, 3244-9.
30. Li, J. W.; Han, Z.; Yu, J.; et al. Wide-temperature-range thermoelectric n-type Mg3(Sb, Bi)2 with high average and peak zT values. Nat. Commun. 2023, 14, 7428.
31. Yen, W.; Huang, H.; Wang, K.; Wu, H. Nano-precipitation and carrier optimization synergistically yielding high-performance n-type Bi2Te3 thermoelectrics. Mater. Today. Phys. 2021, 19, 100416.
32. Wu, H.; Yen, W. High thermoelectric performance in Cu-doped Bi2Te3 with carrier-type transition. Acta. Mater. 2018, 157, 33-41.
33. Zhuang, H.; Pei, J.; Cai, B.; et al. Thermoelectric performance enhancement in BiSbTe alloy by microstructure modulation via cyclic spark plasma sintering with liquid phase. Adv. Funct. Mater. 2021, 31, 2009681.
34. Zhang, X.; Zhao, L. Thermoelectric materials: energy conversion between heat and electricity. J. Materiomics. 2015, 1, 92-105.
35. Hamid, Elsheikh., M.; Shnawah, D. A.; Sabri, M. F. M.; et al. A review on thermoelectric renewable energy: principle parameters that affect their performance. Renew. Sustain. Energy. Rev. 2014, 30, 337-55.
36. Yang, J.; Wang, Z.; Zhao, H.; et al. Effect of composition adjustment on the thermoelectric properties of Mg3Bi2-based thermoelectric materials. Micromachines 2023, 14, 1844.
37. Jin, S.; Ziabari, A.; Koh, Y. R.; et al. Enhanced thermoelectric performance of p-type BixSb2-xTe3 nanowires with pulsed laser assisted electrochemical deposition. Extreme. Mech. Lett. 2016, 9, 386-96.
38. Choi, H.; Kim, S. J.; Kim, Y.; We, J. H.; Oh, M.; Cho, B. J. Enhanced thermoelectric properties of screen-printed Bi0.5Sb1.5Te3 and
39. Liu, W.; Hong, T.; Cheng, X.; et al. Alloy scattering to optimize carrier and phonon transport properties in PbBi2S4 thermoelectric. J. Materiomics. 2025, 11, 100938.
40. Cui, J.; Xue, H.; Xiu, W.; Mao, L.; Ying, P.; Jiang, L. Crystal structure analysis and thermoelectric properties of p-type pseudo-binary (Al2Te3)x-(Bi0.5Sb1.5Te3)1-x (x= 0~0.2) alloys prepared by spark plasma sintering. J. Alloys. Compd. 2008, 460, 426-31.
41. Cooley, J. A.; Promkhan, P.; Gangopadhyay, S.; et al. High Seebeck coefficient and unusually low thermal conductivity near ambient temperatures in layered compound Yb2-x EuxCdSb2. Chem. Mater. 2018, 30, 484-93.