REFERENCES

1. Motesharrei, S.; Rivas, J.; Kalnay, E.; et al. Modeling sustainability: population, inequality, consumption, and bidirectional coupling of the earth and human systems. Natl. Sci. Rev. 2016, 3, 470-94.

2. Feng, L.; Yu, H.; Yang, G.; et al. Novel 3D@2D/2D HHSS@BiOBr/Znln2S4 S-scheme photocatalyst for efficient adsorption-photocatalytic-photosensitization synergistic degradation of organics. Appl. Surf. Sci. 2023, 640, 158340.

3. Bolson, N.; Prieto, P., and., Tadeusz. Capacity factors for electrical power generation from renewable and nonrenewable sources. Proc. Natl. Acad. Sci. U. S. A. 2022, 119, 52.

4. Wang, M.; Liu, S.; Qian, T.; et al. Over 56.55% faradaic efficiency of ambient ammonia synthesis enabled by positively shifting the reaction potential. Nat. Commun. 2019, 10, 341.

5. Wang, H.; Zou, Y.; Sun, H.; Chen, Y.; Li, S.; Lan, Y. Recent progress and perspectives in heterogeneous photocatalytic CO2 reduction through a solid-gas mode. Coord. Chem. Rev. 2021, 438, 213906.

6. Liu, M.; Wei, C.; Zhuzhang, H.; et al. Fully condensed poly (triazine imide) crystals: extended π-conjugation and structural defects for overall water splitting. Angew. Chem. Int. Ed. 2022, 61, e202113389.

7. Yan, Y.; Lin, J.; Huang, K.; et al. Tensile strain-mediated spinel ferrites enable superior oxygen evolution activity. J. Am. Chem. Soc. 2023, 145, 24218-29.

8. Zhou, W.; Li, F.; Yang, X.; et al. Peanut-chocolate-ball-inspired construction of the interface engineering between CdS and intergrown Cd: boosting both the photocatalytic activity and photocorrosion resistance. J. Energy. Chem. 2023, 76, 75-89.

9. Chen, X.; Zhao, J.; Li, G.; Zhang, D.; Li, H. Recent advances in photocatalytic renewable energy production. Energy. Mater. 2022, 2, 200001.

10. Phongamwong, T.; Barrabés, N.; Donphai, W.; Witoon, T.; Rupprechter, G.; Chareonpanich, M. Chlorophyll-modified Au25(SR)18-functionalized TiO2 for photocatalytic degradation of rhodamine B. Appl. Catal. B. Environ. 2023, 325, 122336.

11. Ruan, X.; Zhao, S.; Xu, M.; et al. Iso-elemental ZnIn2S4/Zn3In2S6 heterojunction with low contact energy barrier boosts artificial photosynthesis of hydrogen peroxide. Adv. Energy. Mater. 2024, 14, 2401744.

12. Ruan, X.; Cui, X.; Cui, Y.; et al. Favorable energy band alignment of TiO2 anatase/rutile heterophase homojunctions yields photocatalytic hydrogen evolution with quantum efficiency exceeding 45.6%. Adv. Energy. Mater. 2022, 12, 2200298.

13. Li, S.; He, H.; Li, X.; et al. Construction of Cu-doped α-Fe2O3/γ-Fe2O3 hetero-phase junction composite and its photocatalytic performance. Chem. Eng. J. 2024, 501, 157678.

14. Fujishima, A., and., Honda., K. Electrochemical photolysis of water at a semiconductor electrode. Nature 1972, 238, 37-38.

15. Linsebigler, A. L.; Lu, G.; Yates, J. T. Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results. Chem. Rev. 1995, 95, 735-58.

16. Liu, M.; Qiu, X.; Miyauchi, M.; Hashimoto, K. Cu(II) oxide amorphous nanoclusters grafted Ti3+ Self-Doped TiO2: an efficient visible light photocatalyst. Chem. Mater. 2011, 23, 5282-6.

17. Chen, X.; Selloni, A. Introduction: titanium dioxide (TiO2) nanomaterials. Chem. Rev. 2014, 114, 9281-2.

18. Mishra, P. R.; Srivastava, O. N. On the synthesis, characterization and photocatalytic applications of nanostructured TiO2. Bull. Mater. Sci. 2008, 31, 545-50.

19. Puddu, V.; Choi, H.; Dionysiou, D. D.; Puma, G. L. TiO2 photocatalyst for indoor air remediation: Influence of crystallinity, crystal phase, and UV radiation intensity on trichloroethylene degradation. Appl. Catal. B. Environ. 2010, 94, 211-8.

20. Roy, P.; Berger, S.; Schmuki, P. TiO2 nanotubes: synthesis and applications. Angew. Chem. Int. Ed. 2011, 50, 2904-39.

21. Kyriaki, E. Karakitsou XEV. Effects of altervalent cation doping of titania on its performance as a photocatalyst for water cleavage. J. Phys. Chem. C. 1993, 97, 1184-9.

22. Feng, Y.; Zhang, Y.; Wang, J.; et al. Promotion of anatase/rutile junction to direct conversion of syngas to ethanol on the Rh/TiO2 catalysts. ACS. Catal. 2024, 14, 1874-81.

23. Cho, I. S.; Chen, Z.; Forman, A. J.; et al. Branched TiO2 nanorods for photoelectrochemical hydrogen production. Nano. Lett. 2011, 11, 4978-84.

24. Wang, H.; Chen, J.; Xiao, F.; Zheng, J.; Liu, B. Doping-induced structural evolution from rutile to anatase: formation of Nb-doped anatase TiO2 nanosheets with high photocatalytic activity. J. Mater. Chem. A. 2016, 4, 6926-32.

25. Li, B.; Zheng, H.; Zhou, T.; et al. Revealing the synergistic effect of bulk and surface co-doped boron on TiO2 for enhanced photocatalytic H2 evolution. Chem. Eng. J. 2024, 497, 154726.

26. Wang, G.; Wang, H.; Ling, Y.; et al. Hydrogen-treated TiO2 nanowire arrays for photoelectrochemical water splitting. Nano. Lett. 2011, 11, 3026-33.

27. Choi, S. Y.; Kim, S.; Lee, K. J.; Kim, J. Y.; Han, D. S.; Park, H. Solar hydrogen peroxide production on carbon nanotubes wired to titania nanorod arrays catalyzing As(III) oxidation. Appl. Catal. B. Environ. 2019, 252, 55-61.

28. Xiao, L.; Spies, J. A.; Sheehan, C. J.; et al. Electron transfer dynamics at dye-sensitized SnO2/TiO2 core/shell electrodes in aqueous/nonaqueous electrolyte mixtures. J. Am. Chem. Soc. 2024, 146, 18117-27.

29. Liu ESA. Growth of oriented single-crystalline rutile TiO2 nanorods on transparent conducting substrates for dye-sensitized solar cells. J. Am. Chem. Soc. 2009, 131, 3985-90.

30. Zhang, P.; Tian, Z.; Kang, Y.; et al. Sub-10 nm corrugated TiO2 nanowire arrays by monomicelle-directed assembly for efficient hole extraction. J. Am. Chem. Soc. 2022, 144, 20964-74.

31. Wu, J.; Zhang, Y.; Lu, P.; et al. Engineering 2D multi-hetero-interface in the well-designed nanosheet composite photocatalyst with broad electron-transfer channels for highly-efficient solar-to-fuels conversion. Appl. Catal. B. Environ. 2021, 286, 119944.

32. Zhang, D.; Liu, W.; Wang, R.; Zhang, Z.; Qiu, S. Interface engineering of hierarchical photocatalyst for enhancing photoinduced charge transfers. Appl. Catal. B. Environ. 2021, 283, 119632.

33. Zhou, Y.; Yang, W.; Feng, L.; Hong, J.; Abbas, M.; Kawi, S. Sunflower-disc-inspired vertical growth of 2D ZnIn2S4 on ultra-thin TiO2: Constructing a 3D porous photocatalytic glass film for ultra-efficient organic pollutant degradation. Appl. Catal. B. Environ. Energy. 2025, 363, 124782.

34. Peng, C.; Zhou, T.; Wei, P.; et al. Regulation of the rutile/anatase TiO2 phase junction in-situ grown on -OH terminated Ti3C2Tx (MXene) towards remarkably enhanced photocatalytic hydrogen evolution. Chem. Eng. J. 2022, 439, 135685.

35. Cho, M.; Younis, S. A.; Lee, C. S.; Li, X.; Kim, K. The superior mineralization potential of a graphitic carbon nitride/titanium dioxide composite and its application in the construction of a portable photocatalytic air purification system against gaseous formaldehyde. J. Mater. Chem. A. 2024, 12, 32239-58.

36. Navakoteswara, Rao., V.; Kwon, H.; Lee, Y.; et al. Synergistic integration of MXene nanosheets with CdS@TiO2 core@shell S-scheme photocatalyst for augmented hydrogen generation. Chem. Eng. J. 2023, 471, 144490.

37. Yang, G.; Ding, H.; Chen, D.; Feng, J.; Hao, Q.; Zhu, Y. Construction of urchin-like ZnIn2S4-Au-TiO2 heterostructure with enhanced activity for photocatalytic hydrogen evolution. Appl. Catal. B. Environ. 2018, 234, 260-7.

38. Cui, P.; Qu, S.; Zhang, Q.; et al. Homojunction perovskite solar cells: opportunities and challenges. Energy. Mater. 2022, 1, 100014.

39. Zhang, Y.; Cao, Q.; Meng, A.; et al. Molecular heptazine-triazine junction over carbon nitride frameworks for artificial photosynthesis of hydrogen peroxide. Adv. Mater. 2023, 35, 2306831.

40. Liu, J.; Yu, X.; Liu, Q.; et al. Surface-phase junctions of branched TiO2 nanorod arrays for efficient photoelectrochemical water splitting. Appl. Catal. B. Environ. 2014, 158-9, 296-300.

41. Chen, K.; Li, G.; Hu, Z.; et al. Construction of γ-MnS/α-MnS hetero-phase junction for high-performance sodium-ion batteries. Chem. Eng. J. 2022, 435, 135149.

42. Ren, H.; Yu, R.; Qi, J.; Zhang, L.; Jin, Q.; Wang, D. Hollow multishelled heterostructured anatase/TiO2(B) with superior rate capability and cycling performance. Adv. Mater. 2019, 31, 1805754.

43. Liu, C.; Zheng, L.; Song, Q.; et al. A Metastable crystalline phase in two-dimensional metallic oxide nanoplates. Angew. Chem. Int. Ed. 2019, 58, 2055-9.

44. Zhang, J.; Xu, Q.; Feng, Z.; Li, M.; Li, C. Importance of the relationship between surface phases and photocatalytic activity of TiO2. Angew. Chem. Int. Ed. 2008, 47, 1766-9.

45. Jiang, Y.; Zhao, W.; Li, S.; et al. Elevating photooxidation of methane to formaldehyde via TiO2 crystal phase engineering. J. Am. Chem. Soc. 2022, 144, 15977-87.

46. Chen, X.; Liu, L.; Yu, P. Y.; Mao, S. S. Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals. Science 2011, 331, 746-50.

47. Yan, P.; Wang, X.; Zheng, X.; et al. Photovoltaic device based on TiO2 rutile/anatase phase junctions fabricated in coaxial nanorod arrays. Nano. Energy. 2015, 15, 406-12.

48. Zhang, W.; He, H.; Tian, Y.; et al. Synthesis of uniform ordered mesoporous TiO2 microspheres with controllable phase junctions for efficient solar water splitting. Chem. Sci. 2019, 10, 1664-70.

49. Tomita, K.; Petrykin, V.; Kobayashi, M.; Shiro, M.; Yoshimura, M.; Kakihana, M. A water-soluble titanium complex for the selective synthesis of nanocrystalline brookite, rutile, and anatase by a hydrothermal method. Angew. Chem. Int. Ed. 2006, 45, 2378-81.

50. Lei, W.; Wang, Y.; Wang, H.; Suzuki, N.; Terashima, C.; Fujishima, A. Gelation-induced controlled synthesis of TiO2 with tunable phase transition for efficient photocatalytic hydrogen evolution. Inorg. Chem. Front. 2024, 11, 2178-86.

51. Rao, K. V. K.; Naidu, S. V. N.; Iyengar, L. Thermal expansion of rutile and anatase. J. Am. Ceram. Soc. 1970, 53, 124-6.

52. Koirala, R.; Pratsinis, S. E.; Baiker, A. Synthesis of catalytic materials in flames: opportunities and challenges. Chem. Soc. Rev. 2016, 45, 3053-68.

53. Zhang, X.; Chen, J.; Jiang, S.; et al. Enhanced photocatalytic degradation of gaseous toluene and liquidus tetracycline by anatase/rutile titanium dioxide with heterophase junction derived from materials of Institut Lavoisier-125(Ti): degradation pathway and mechanism studies. J. Colloid. Interface. Sci. 2021, 588, 122-37.

54. Peng, C.; Wang, H.; Yu, H.; Peng, F. (111) TiO2-x/Ti3C2: synergy of active facets, interfacial charge transfer and Ti3+ doping for enhance photocatalytic activity. Mater. Res. Bull. 2017, 89, 16-25.

55. Xia, X.; Peng, S.; Bao, Y.; et al. Control of interface between anatase TiO2 nanoparticles and rutile TiO2 nanorods for efficient photocatalytic H2 generation. J. Power. Sources. 2018, 376, 11-7.

56. Choi, H. C.; Jung, Y. M.; Kim, S. B. Size effects in the Raman spectra of TiO2 nanoparticles. Vib. Spectrosc. 2005, 37, 33-8.

57. Brouwer, D. H.; Mikolajewski, J. G. A combined solid-state NMR and quantum chemical calculation study of hydrogen bonding in two forms of α-d-glucose. Solid. State. Nucl. Magn. Reson. 2023, 123, 101848.

58. Carnahan, S. L.; Chen, Y.; Wishart, J. F.; Lubach, J. W.; Rossini, A. J. Magic angle spinning dynamic nuclear polarization solid-state NMR spectroscopy of γ-irradiated molecular organic solids. Solid. State. Nucl. Magn. Reson. 2022, 119, 101785.

59. Pisklak, D. M.; Zielińska-Pisklak, M. A.; Szeleszczuk, Ł.; Wawer, I. 13C solid-state NMR analysis of the most common pharmaceutical excipients used in solid drug formulations, Part I: chemical shifts assignment. J. Pharm. Biomed. Anal. 2016, 122, 81-9.

60. Wang, J.; Yu, T.; Wang, M.; Guo, X.; Chen, Y. A novel biochar-composed TiO2 (BC-Ti) for efficient photocatalytic degradation on arbidol. J. Ind. Eng. Chem. 2024, 134, 537-47.

61. Bibi, S.; Ahmad, A.; Anjum, M. A. R.; et al. Photocatalytic degradation of malachite green and methylene blue over reduced graphene oxide (rGO) based metal oxides (rGO-Fe3O4/TiO2) nanocomposite under UV-visible light irradiation. J. Environ. Chem. Eng. 2021, 9, 105580.

62. Shah, A. H.; Rather, M. A. Effect of calcination temperature on the crystallite size, particle size and zeta potential of TiO2 nanoparticles synthesized via polyol-mediated method. Mater. Today. Proc. 2021, 44, 482-8.

63. Peng, C.; Wei, P.; Chen, X.; et al. A hydrothermal etching route to synthesis of 2D MXene (Ti3C2, Nb2C): enhanced exfoliation and improved adsorption performance. Ceram. Int. 2018, 44, 18886-93.

64. Zhou, T.; Wu, C.; Wang, Y.; et al. Super-tough MXene-functionalized graphene sheets. Nat. Commun. 2020, 11, 2077.

65. Midya, P.; Sarngan, P. P.; Dutta, A.; Kumar, Chattopadhyay., K.; Sarkar, D. Carbon-modified TiO2 nanourchin with Ag nanoparticle decoration for environmental remediation. Mater. Sci. Eng. B. 2022, 286, 116028.

66. Gao, P.; Shi, H.; Ma, T.; et al. MXene/TiO2 heterostructure-decorated hard carbon with stable Ti-O-C bonding for enhanced sodium-ion storage. ACS. Appl. Mater. Interfaces. 2021, 13, 51028-38.

67. Roldán, M. V.; Porta, E.; Durán, A.; Castro, Y.; Pellegri, N. Development of photocatalysts based on TiO2 films with embedded Ag nanoparticles. Int. J. Appl. Glass. Sci. 2022, 13, 429-43.

68. With, P. C.; Helmstedt, U.; Naumov, S.; et al. Low-temperature photochemical conversion of organometallic precursor layers to titanium(IV) oxide thin films. Chem. Mater. 2016, 28, 7715-24.

69. Chen, J.; Mu, L.; Jiang, B.; Yin, H.; Song, X.; Li, A. TG/DSC-FTIR and Py-GC investigation on pyrolysis characteristics of petrochemical wastewater sludge. Bioresour. Technol. 2015, 192, 1-10.

70. Lovatti, B. P.; Silva, S. R.; Portela, N. D. A.; et al. Identification of petroleum profiles by infrared spectroscopy and chemometrics. Fuel 2019, 254, 115670.

71. Özsin, G.; Pütün, A. E. Kinetics and evolved gas analysis for pyrolysis of food processing wastes using TGA/MS/FT-IR. Waste. Manag. 2017, 64, 315-26.

72. Fan, Q. G.; Lewis, D. M.; Tapley, K. N. Characterization of cellulose aldehyde using Fourier transform infrared spectroscopy. J. Appl. Polym. Sci. 2001, 82, 1195-202.

73. Tracy, L. Thompson and John T. Yates J. Surface science studies of the photoactivation of TiO2-new photochemical processes. Chem. Rev. 2006, 106, 4428-53.

74. Ding, Y.; Yang, I. S.; Li, Z.; et al. Nanoporous TiO2 spheres with tailored textural properties: controllable synthesis, formation mechanism, and photochemical applications. Prog. Mater. Sci. 2020, 109, 100620.

75. Scanlon, D. O.; Dunnill, C. W.; Buckeridge, J.; et al. Band alignment of rutile and anatase TiO2. Nat. Mater. 2013, 12, 798-801.

76. Apopei, P.; Catrinescu, C.; Teodosiu, C.; Royer, S. Mixed-phase TiO2 photocatalysts: crystalline phase isolation and reconstruction, characterization and photocatalytic activity in the oxidation of 4-chlorophenol from aqueous effluents. Appl. Catal. B. Environ. 2014, 160-161, 374-82.

77. Gao, Y.; Zhu, J.; An, H.; et al. Directly probing charge separation at interface of TiO2 phase junction. J. Phys. Chem. Lett. 2017, 8, 1419-23.

78. Qu, J.; He, J.; Li, H.; et al. Unraveling the role of interface in photogenerated charge separation at the anatase/rutile heterophase junction. J. Phys. Chem. C. 2023, 127, 768-75.

Energy Materials
ISSN 2770-5900 (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/