REFERENCES
1. Qin, B.; Kanatzidis, M. G.; Zhao, L. D. The development and impact of tin selenide on thermoelectrics. Science 2024, 386, eadp2444.
2. Jia, Y.; Jiang, Q.; Sun, H.; et al. Wearable thermoelectric materials and devices for self-powered electronic systems. Adv. Mater. 2021, 33, 2102990.
3. Shuai, J.; Ge, B.; Mao, J.; Song, S.; Wang, Y.; Ren, Z. Significant role of Mg stoichiometry in designing high thermoelectric performance for Mg3(Sb,Bi)2-based n-type Zintls. J. Am. Chem. Soc. 2018, 140, 1910-5.
4. Justl, A. P.; Ricci, F.; Pike, A.; et al. Unlocking the thermoelectric potential of the Ca14AlSb11 structure type. Sci. Adv. 2022, 8, eabq3780.
5. Justl, A. P.; Kauzlarich, S. M. Probing high-temperature oxidation of thermoelectric phases Yb14MSb11 (M = Mg, Mn, Zn). ACS. Appl. Mater. Interfaces. 2022, 14, 47246-54.
6. Guo, K.; Cao, Q.; Zhao, J. Zintl phase compounds AM2Sb2 (A=Ca, Sr, Ba, Eu, Yb; M=Zn, Cd) and their substitution variants: a class of potential thermoelectric materials. J. Rare. Earths. 2013, 31, 1029-38.
7. Jeong, J.; Shim, D.; Yox, P.; et al. Tuning the radius ratio to enhance thermoelectric properties in the Zintl compounds AM2Sb2 (A = Ba, Sr; M = Zn, Cd). Chem. Mater. 2023, 35, 3985-97.
8. Lee, J.; Kim, M.; Pi, J. H.; et al. Insights into the crystal structure and thermoelectric properties of the Zintl phase Ca9Cd3+x-yMx+ySb9 (M = Cu, Zn) system. Chem. Mater. 2025, 37, 368-77.
9. Chen, C.; Xue, W.; Li, X.; et al. Enhanced thermoelectric performance of Zintl phase Ca9Zn4+xSb9 by beneficial disorder on the selective cationic site. ACS. Appl. Mater. Interfaces. 2019, 11, 37741-7.
10. Bux, S. K.; Zevalkink, A.; Janka, O.; et al. Glass-like lattice thermal conductivity and high thermoelectric efficiency in Yb9Mn4.2Sb9. J. Mater. Chem. A. 2014, 2, 215-20.
11. Kazem, N.; Zaikina, J. V.; Ohno, S.; Snyder, G. J.; Kauzlarich, S. M. Coinage-metal-stuffed Eu9Cd4Sb9: metallic compounds with anomalous low thermal conductivities. Chem. Mater. 2015, 27, 7508-19.
12. Brechtel, E.; Cordier, G.; Schafer, H. Darstellung und kristallstruktur von Ca9Mn4Bi9 und Ca9Zn4Bi9/Preparation and crystal structure of Ca9Mn4Bi9 and Ca9Zn4Bi9. Z. Naturforsch. 1979, 34, 1229-33.
13. Liu, X. C.; Wu, Z.; Xia, S. Q.; Tao, X. T.; Bobev, S. Structural variability versus structural flexibility. A case study of Eu9Cd4+xSb9 and Ca9Mn4+xSb9 (x ≈ 1/2). Inorg. Chem. 2015, 54, 947-55.
14. Liu, X. C.; Liu, K. F.; Wang, Q. Q.; Wang, Y. M.; Pan, M. Y.; Xia, S. Q. Exploring new Zintl phases in the 9-4-9 family via Al substitution. Synthesis, structure, and physical properties of Ae9Mn4-xAlxSb9 (Ae = Ca, Yb, Eu). Inorg. Chem. 2020, 59, 3709-17.
15. Wang, Y.; Bobev, S. Rare-earth metal substitutions in Ca9-xRExMn4Sb9 (RE = La-Nd, Sm; x ≈ 1). Synthesis and characterization of a new series of narrow-gap semiconductors. Chem. Mater. 2018, 30, 3518-27.
16. Smiadak, D. M.; Baranets, S.; Rylko, M.; et al. Single crystal growth and characterization of new Zintl phase Ca9Zn3.1In0.9Sb9. J. Solid. State. Chem. 2021, 296, 121947.
17. Uvarov, C. A.; Ortega-Alvarez, F.; Kauzlarich, S. M. Enhanced high-temperature thermoelectric performance of Yb14-xCaxMnSb11. Inorg. Chem. 2012, 51, 7617-24.
18. Shuai, J.; Wang, Y.; Liu, Z.; et al. Enhancement of thermoelectric performance of phase pure Zintl compounds Ca1-xYbxZn2Sb2,
19. Ohno, S.; Aydemir, U.; Amsler, M.; et al. Achieving zT > 1 in inexpensive Zintl phase Ca9Zn4+xSb9 by phase boundary mapping. Adv. Funct. Mater. 2017, 27, 1606361.
20. APEX2, Version 2013.6-2. Madison, WI: Bruker AXS Inc., 2013.
21. SAINT. Madison, WI: Bruker AXS Inc., 2002.
22. Sheldrick, G. M. SADABS. Göttingen: University of Göttingen, 2003.
23. Gelato, L. M.; Parthé, E.
25. Andersen, O. K.; Jepsen, O. Explicit, first-principles tight-binding theory. Phys. Rev. Lett. 1984, 53, 2571-4.
26. Lambrecht, W. R. L.; Andersen, O. K. Minimal basis sets in the linear muffin-tin orbital method: application to the diamond-structure crystals C, Si, and Ge. Phys. Rev. B. Condens. Matter. 1986, 34, 2439.
27. Jepsen, O.; Andersen, O. K. The STUTTGART TB-LMTO program. Available from: https://www2.fkf.mpg.de/andersen/LMTODOC/LMTODOC.html [Last accessed on 25 Jun 2025].
28. Andersen, O. K.; Jepsen, O.; Glötzel, D. Canonical description of the band structures of metals. 1985; pp. 65-72. Available from: https://www2.fkf.mpg.de/andersen/docs/pub/85CanonicalVarenna.pdf [Last accessed on 25 Jun 2025].
29. Jepsen, O.; Andersen, O. K. Calculated electronic structure of the sandwichd1 metals LaI2 and CeI2: application of new LMTO techniques. Z. Physik. B. Condensed. Matter. 1995, 97, 35-47.
30. Blöchl, P. E.; Jepsen, O.; Andersen, O. K. Improved tetrahedron method for Brillouin-zone integrations. Phys. Rev. B. Condens. Matter. 1994, 49, 16223-33.
31. Borup, K. A.; de Boor, J.; Wang, H.; et al. Measuring thermoelectric transport properties of materials. Energy. Environ. Sci. 2015, 8, 423-35.
32. Kim, H.; Gibbs, Z. M.; Tang, Y.; Wang, H.; Snyder, G. J. Characterization of Lorenz number with Seebeck coefficient measurement. APL. Mater. 2015, 3, 041506.
33. Xia, S. Q.; Bobev, S. Interplay between size and electronic effects in determining the homogeneity range of the A9Zn4+xPn9 and
34. Bobev, S.; Thompson, J. D.; Sarrao, J. L.; Olmstead, M. M.; Hope, H.; Kauzlarich, S. M. Probing the limits of the Zintl concept: structure and bonding in rare-earth and alkaline-earth zinc-antimonides Yb9Zn4+xSb9 and Ca9Zn4.5Sb9. Inorg. Chem. 2004, 43, 5044-52.
35. Shannon, R. D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta. Cryst. A. 1976, 32, 751-67.
36. Wachter, J. The Elements. Von J. Emsley. Clarendon Press, Oxford 1989. 256 S., Paperback £ 9.95. – ISBN 0-19-855237-8. Angew. Chem. Int. Ed. 1990, 102, 115.
37. Lei, J.; Wuliji, H.; Zhao, K.; et al. Efficient lanthanide Gd doping promoting the thermoelectric performance of Mg3Sb2-based materials. J. Mater. Chem. A. 2021, 9, 25944-53.