REFERENCES
1. Mohammadi, F.; Saif, M. A comprehensive overview of electric vehicle batteries market. e-Prime. Adv. Electr. Eng. Electron. Energy. 2023, 3, 100127.
2. Rangarajan, S. S.; Sunddararaj, S. P.; Sudhakar, A. V. V.; et al. Lithium-ion batteries-the crux of electric vehicles with opportunities and challenges. Clean. Technol. 2022, 4, 908-30.
3. Sankaran, G.; Venkatesan, S. An overview of lithium-ion batteries for electric mobility and energy storage applications. IOP. Conf. Ser.. Earth. Environ. Sci. 2022, 1042, 012012.
4. Xie, Y.; Jin, Y.; Xiang, L. Li-rich layered oxides: structure, capacity and voltage fading mechanisms and solving strategies. Particuology 2022, 61, 1-10.
5. Yan, J.; Liu, X.; Li, B. Recent progress in Li-rich layered oxides as cathode materials for Li-ion batteries. RSC. Adv. 2014, 4, 63268-84.
6. Banza, Lubaba., Nkulu., C.; Casas, L.; Haufroid, V.; et al. Sustainability of artisanal mining of cobalt in DR congo. Nat. Sustain. 2018, 1, 495-504.
8. Sun, Y. K.; Lee, D. J.; Lee, Y. J.; Chen, Z.; Myung, S. T. Cobalt-free nickel rich layered oxide cathodes for lithium-ion batteries. ACS. Appl. Mater. Interfaces. 2013, 5, 11434-40.
9. Ding, X.; Luo, D.; Cui, J.; Xie, H.; Ren, Q.; Lin, Z. An ultra-long-life lithium-rich Li1.2Mn0.6Ni0.2O2 cathode by three-in-one surface modification for lithium-ion batteries. Angew. Chem. Int. Ed. 2020, 59, 7778-82.
10. Kim, S.; Cho, W.; Zhang, X.; Oshima, Y.; Choi, J. W. A stable lithium-rich surface structure for lithium-rich layered cathode materials. Nat. Commun. 2016, 7, 13598.
11. Manthiram, A. A reflection on lithium-ion battery cathode chemistry. Nat. Commun. 2020, 11, 1550.
12. Clément, R. J.; Lun, Z.; Ceder, G. Cation-disordered rocksalt transition metal oxides and oxyfluorides for high energy lithium-ion cathodes. Energy. Environ. Sci. 2020, 13, 345-73.
13. Zhou, C.; Wang, P.; Zhang, B.; et al. Suppressing the voltage fading of Li[Li0.2Ni0.13Co0.13Mn0.54]O2 cathode material via Al2O3 coating for Li-ion batteries. J. Electrochem. Soc. 2018, 165, A1648.
14. Zhai, X.; Zhang, P.; Huang, H.; et al. Surface modification of Li-rich layered Li1.2Mn0.54Ni0.13Co0.13O2 oxide with Fe2O3 as cathode material for Li-ion batteries. Solid. State. Ionics. 2021, 366-7, 115661.
15. Lee, J.; Kang, H.; Moon, J.; et al. Enhancement of the cyclic stability of a Li-excess layered oxide through a simple electrode treatment for LiF-coating. Electrochim. Acta. 2025, 524, 145919.
16. Zhao, T.; Chen, S.; Chen, R.; et al. The positive roles of integrated layered-spinel structures combined with nanocoating in low-cost Li-rich cathode Li[Li0.2Fe0.1Ni0.15Mn0.55]O2 for lithium-ion batteries. ACS. Appl. Mater. Interfaces. 2014, 6, 21711-20.
17. Wang, Y.; Yu, W.; Zhao, L.; et al. AlPO4-Li3PO4 dual shell for enhancing interfacial stability of Co-free Li-rich Mn-based cathode. Electrochim. Acta. 2023, 462, 142664.
18. Sai, L.; Dai, Z.; Wang, Z.; Zhao, H.; Bai, Y. Multiple-functional LiTi2(PO4)3 modification improving long-term performances of Li-rich Mn-based cathode material for advanced lithium-ion batteries. J. Power. Sources. 2024, 613, 234870.
19. Wu, H.; Li, H.; Yang, P.; Xing, Y.; Zhang, S. Surface modification of Li1.2Mn0.6Ni0.2O2 with electronic conducting polypyrrole. Int. J. Electrochem. Sci. 2018, 13, 6930-9.
20. Song, B.; Lai, M. O.; Liu, Z.; Liu, H.; Lu, L. Graphene-based surface modification on layered Li-rich cathode for high-performance Li-ion batteries. J. Mater. Chem. A. 2013, 1, 9954-65.
21. Uzun, D. Boron-doped Li1.2Mn0.6Ni0.2O2 as a cathode active material for lithium ion battery. Solid. State. Ionics. 2015, 281, 73-81.
22. Jiang, W.; Zhang, C.; Feng, Y.; et al. Achieving high structure and voltage stability in cobalt-free Li-rich layered oxide cathodes via selective dual-cation doping. Energy. Storage. Mater. 2020, 32, 37-45.
23. Li, G.; You, L.; Wen, Y.; et al. Ultrathin Li-Si-O Coating layer to stabilize the surface structure and prolong the cycling life of single-crystal LiNi0.6Co0.2Mn0.2O2 cathode materials at 4.5 V. ACS. Appl. Mater. Interfaces. 2021, 13, 10952-63.
24. Celeste, A.; Tuccillo, M.; Santoni, A.; Reale, P.; Brutti, S.; Silvestri, L. Exploring a Co-free, Li-rich layered oxide with low content of nickel as a positive electrode for Li-ion battery. ACS. Appl. Energy. Mater. 2021, 4, 11290-7.
25. Li, Y.; Bai, Y.; Wu, C.; et al. Three-dimensional fusiform hierarchical micro/nano Li1.2Ni0.2Mn0.6O2 with a preferred orientation (110) plane as a high energy cathode material for lithium-ion batteries. J. Mater. Chem. A. 2016, 4, 5942-51.
26. Geng, F.; Wang, L.; Stralka, T.; et al. (111)-oriented growth and acceptor doping of transparent conductive CuI:S thin films by spin coating and radio frequency-sputtering. Adv. Eng. Mater. 2023, 25, 2201666.
27. Kiciński, W.; Dyjak, S. Transition metal impurities in carbon-based materials: pitfalls, artifacts and deleterious effects. Carbon 2020, 168, 748-845.
28. Martínez-sierra J, Galilea San Blas O, Marchante Gayón J, García Alonso J. sulfur analysis by inductively coupled plasma-mass spectrometry: a review. Spectrochim. Acta. B. 2015, 108, 35-52.
29. Wahlqvist, M.; Shchukarev, A. XPS spectra and electronic structure of group IA sulfates. J. Electron. Spectrosc. Relat. Phenom. 2007, 156-158, 310-4.
30. Liao, W.; Liu, H.; Qi, L.; et al. Lithium/bismuth co-functionalized phosphotungstic acid catalyst for promoting dinitrogen electroreduction with high Faradaic efficiency. Cell. Rep. Phys. Sci. 2021, 2, 100557.
31. Lauer, A. R.; Hellmann, R.; Montes-Hernandez, G.; et al. Deciphering strontium sulfate precipitation via Ostwald’s rule of stages: from prenucleation clusters to solution-mediated phase tranformation. J. Chem. Phys. 2023, 158, 054501.
32. Yoon, T.; Soon, J.; Lee, T. J.; Ryu, J. H.; Oh, S. M. Dissolution of cathode-electrolyte interphase deposited on LiNi0.5Mn1.5O4 for lithium-ion batteries. J. Power. Sources. 2021, 503, 230051.
33. Liao, J.; Zhang, Z.; Fan, W.; Wang, Q.; Liao, D. Synchronous construction of oxygen vacancies with suitable concentrations and carbon coating on the surface of Li-rich layered oxide cathode materials by spray drying for Li-ion batteries. Electrochim. Acta. 2022, 405, 139798.
34. Gent, W. E.; Lim, K.; Liang, Y.; et al. Coupling between oxygen redox and cation migration explains unusual electrochemistry in lithium-rich layered oxides. Nat. Commun. 2017, 8, 2091.
35. Singer, A.; Zhang, M.; Hy, S.; et al. Nucleation of dislocations and their dynamics in layered oxide cathode materials during battery charging. Nat. Energy. 2018, 3, 641-7.
36. Abdel-ghany, A.; Hashem, A. M.; Mauger, A.; Julien, C. M. Lithium-rich cobalt-free manganese-based layered cathode materials for Li-ion batteries: suppressing the voltage fading. Energies 2020, 13, 3487.
37. Hirooka, M.; Sekiya, T.; Omomo, Y.; et al. Degradation mechanism of LiCoO2 under float charge conditions and high temperatures. Electrochim. Acta. 2019, 320, 134596.
38. Zhuang, Z.; Wang, J.; Jia, K.; et al. Ultrahigh-voltage LiCoO2 at 4.7 V by interface stabilization and band structure modification. Adv. Mater. 2023, 35, 2212059.
39. Yabuuchi, N.; Kubota, K.; Aoki, Y.; Komaba, S. Understanding particle-size-dependent electrochemical properties of Li2MnO3-based positive electrode materials for rechargeable lithium batteries. J. Phys. Chem. C. 2016, 120, 875-85.
40. Li, Q.; Li, G.; Fu, C.; et al. Balancing stability and specific energy in Li-rich cathodes for lithium ion batteries: a case study of a novel Li-Mn-Ni-Co oxide. J. Mater. Chem. A. 2015, 3, 10592-602.
41. Nitta, N.; Wu, F.; Lee, J. T.; Yushin, G. Li-ion battery materials: present and future. Mater. Today. 2015, 18, 252-64.
42. Choi, H.; Schuer, A. R.; Moon, H.; Kuenzel, M.; Passerini, S. Investigating the particle size effect on the electrochemical performance and degradation of cobalt-free lithium-rich layered oxide Li1.2Ni0.2Mn0.6O2. Electrochim. Acta. 2022, 430, 141047.
43. Gao, D.; Zeng, Z.; Mi, H.; et al. Enhanced structural stability and overall conductivity of Li-rich layered oxide materials achieved by a dual electron/lithium-conducting coating strategy for high-performance lithium-ion batteries. J. Mater. Chem. A. 2019, 7, 23964-72.
44. McClelland, I.; Booth, S. G.; Anthonisamy, N. N.; et al. Direct observation of dynamic lithium diffusion behavior in nickel-rich, LiNi0.8Mn0.1Co0.1O2 (NMC811) cathodes using operando muon spectroscopy. Chem. Mater. 2023, 35, 4149-58.
45. Zheng, J.; Shi, W.; Gu, M.; et al. Electrochemical kinetics and performance of layered composite cathode material Li[Li0.2Ni0.2Mn0.6]O2. J. Electrochem. Soc. 2013, 160, A2212.
46. Chen, M.; Jiang, S.; Huang, C.; et al. Synergetic effects of multifunctional composites with more efficient polysulfide immobilization and ultrahigh sulfur content in lithium-sulfur batteries. ACS. Appl. Mater. Interfaces. 2018, 10, 13562-72.
47. Assat, G.; Foix, D.; Delacourt, C.; Iadecola, A.; Dedryvère, R.; Tarascon, J. M. Fundamental interplay between anionic/cationic redox governing the kinetics and thermodynamics of lithium-rich cathodes. Nat. Commun. 2017, 8, 2219.
48. Bag, S.; Zhou, C.; Kim, P. J.; Pol, V. G.; Thangadurai, V. LiF modified stable flexible PVDF-garnet hybrid electrolyte for high performance all-solid-state Li-S batteries. Energy. Storage. Mater. 2020, 24, 198-207.
49. Khosla, N.; Narayan, J.; Narayan, R.; Sun, X.; Paranthaman, M. P. Nanosecond laser annealing of NMC 811 cathodes for enhanced performance. J. Electrochem. Soc. 2023, 170, 030520.
50. Xu, J. Critical review on cathode-electrolyte interphase toward high-voltage cathodes for Li-ion batteries. Nano-Micro. Lett. 2022, 14, 166.
51. Han, J. Y.; Jung, S. Thermal stability and the effect of water on hydrogen fluoride generation in lithium-ion battery electrolytes containing LiPF6. Batteries 2022, 8, 61.
52. Son, S.; Zhang, Z.; Gim, J.; et al. Transition metal dissolution in lithium-ion cells: a piece of the puzzle. J. Phys. Chem. C. 2023, 127, 1767-75.
53. Zhang, W.; Sun, Y.; Deng, H.; et al. Dielectric polarization in inverse spinel-structured Mg2TiO4 coating to suppress oxygen evolution of Li-rich cathode materials. Adv. Mater. 2020, 32, 2000496.
54. Jung, R.; Linsenmann, F.; Thomas, R.; et al. Nickel, manganese, and cobalt dissolution from Ni-rich NMC and their effects on NMC622-graphite cells. J. Electrochem. Soc. 2019, 166, A378.
55. Björklund, E.; Brandell, D.; Hahlin, M.; Edström, K.; Younesi, R. How the negative electrode influences interfacial and electrochemical properties of LiNi1/3Co1/3Mn1/3O2 cathodes in Li-ion batteries. J. Electrochem. Soc. 2017, 164, A3054.
56. Gao, L.; Jin, X.; Li, Z.; Li, F.; Xu, B.; Wang, C. Ultrathin titanium dioxide coating enables high-rate and long-life lithium cobalt oxide. Materials 2024, 17, 3036.
57. Holsclaw, C. M.; Sogi, K. M.; Gilmore, S. A.; et al. Structural characterization of a novel sulfated menaquinone produced by stf3 from mycobacterium tuberculosis. ACS. Chem. Biol. 2008, 3, 619-24.
58. Lin, Q.; Guan, W.; Meng, J.; et al. A new insight into continuous performance decay mechanism of Ni-rich layered oxide cathode for high energy lithium ion batteries. Nano. Energy. 2018, 54, 313-21.
59. Hua, W.; Chen, M.; Schwarz, B.; et al. Lithium/oxygen incorporation and microstructural evolution during synthesis of Li-rich layered Li[Li0.2Ni0.2Mn0.6]O2 oxides. Adv. Energy. Mater. 2019, 9, 1803094.
60. Choi, W.; Shin, H.; Kim, J. M.; Choi, J.; Yoon, W. Modeling and applications of electrochemical impedance spectroscopy (EIS) for lithium-ion batteries. J. Electrochem. Sci. Technol. 2020, 11, 1-13.