REFERENCES

1. Beretta, D.; Neophytou, N.; Hodges, J. M.; et al. Thermoelectrics: from history, a window to the future. Mater. Sci. Eng. R. Rep. 2019, 138, 100501.

2. Bell, L. E. Cooling, heating, generating power, and recovering waste heat with thermoelectric systems. Science 2008, 321, 1457-61.

3. Channegowda, M.; Mulla, R.; Nagaraj, Y.; et al. Comprehensive insights into synthesis, structural features, and thermoelectric properties of high-performance inorganic chalcogenide nanomaterials for conversion of waste heat to electricity. ACS. Appl. Energy. Mater. 2022, 5, 7913-43.

4. Snyder, G. J.; Snyder, A. H. Figure of merit ZT of a thermoelectric device defined from materials properties. Energy. Environ. Sci. 2017, 10, 2280-3.

5. Sootsman, J. R.; Chung, D. Y.; Kanatzidis, M. G. New and old concepts in thermoelectric materials. Angew. Chem. Int. Ed. 2009, 48, 8616-39.

6. Hicks, L. D.; Dresselhaus, M. S. Effect of quantum-well structures on the thermoelectric figure of merit. Phys. Rev. B. Condens. Matter. 1993, 47, 12727-31.

7. Hicks, L. D.; Dresselhaus, M. S. Thermoelectric figure of merit of a one-dimensional conductor. Phys. Rev. B. Condens. Matter. 1993, 47, 16631-4.

8. Neophytou, N.; Kosina, H. Effects of confinement and orientation on the thermoelectric power factor of silicon nanowires. Phys. Rev. B. 2011, 83, 245305.

9. Neophytou, N.; Kosina, H. On the interplay between electrical conductivity and Seebeck coefficient in ultra-narrow silicon nanowires. J. Electron. Mater. 2012, 41, 1305-11.

10. Cornett, J. E.; Rabin, O. Thermoelectric figure of merit calculations for semiconducting nanowires. Appl. Phys. Lett. 2011, 98, 182104.

11. Kim, R.; Datta, S.; Lundstrom, M. S. Influence of dimensionality on thermoelectric device performance. J. Appl. Phys. 2009, 105, 034506.

12. Zhou, C.; Lee, Y. K.; Yu, Y.; et al. Polycrystalline SnSe with a thermoelectric figure of merit greater than the single crystal. Nat. Mater. 2021, 20, 1378-84.

13. Lee, Y. K.; Luo, Z.; Cho, S. P.; Kanatzidis, M. G.; Chung, I. Surface oxide removal for polycrystalline SnSe reveals near-single-crystal thermoelectric performance. Joule 2019, 3, 719-31.

14. Roychowdhury, S.; Ghosh, T.; Arora, R.; et al. Enhanced atomic ordering leads to high thermoelectric performance in AgSbTe2. Science 2021, 371, 722-7.

15. He, J.; Tritt, T. M. Advances in thermoelectric materials research: looking back and moving forward. Science 2017, 357, eaak9997.

16. Yang, J.; Xi, L.; Qiu, W.; et al. On the tuning of electrical and thermal transport in thermoelectrics: an integrated theory-experiment perspective. NPJ. Comput. Mater. 2016, 2, 201515.

17. Biswas, K.; He, J.; Blum, I. D.; et al. High-performance bulk thermoelectrics with all-scale hierarchical architectures. Nature 2012, 489, 414-8.

18. Zhao, L. D.; Lo, S. H.; Zhang, Y.; et al. Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals. Nature 2014, 508, 373-7.

19. Zhu, B.; Liu, X.; Wang, Q.; et al. Realizing record high performance in n-type Bi2Te3-based thermoelectric materials. Energy. Environ. Sci. 2020, 13, 2106-14.

20. Lin, C.; Yen, W.; Tsai, Y.; Wu, H. Unravelling p-n conduction transition in high thermoelectric figure of merit gallium-doped Bi2Te3 via phase diagram engineering. ACS. Appl. Energy. Mater. 2020, 3, 1311-8.

21. Liu, H.; Yuan, X.; Lu, P.; et al. Ultrahigh thermoelectric performance by electron and phonon critical scattering in Cu2Se1-xIx. Adv. Mater. 2013, 25, 6607-12.

22. Zhang, J.; Song, L.; Pedersen, S. H.; Yin, H.; Hung, L. T.; Iversen, B. B. Discovery of high-performance low-cost n-type Mg3Sb2-based thermoelectric materials with multi-valley conduction bands. Nat. Commun. 2017, 8, 13901.

23. Cheng, Y.; Yang, J.; Jiang, Q.; et al. New insight into InSb-based thermoelectric materials: from a divorced eutectic design to a remarkably high thermoelectric performance. J. Mater. Chem. A. 2017, 5, 5163-70.

24. Rogl, G.; Grytsiv, A.; Rogl, P.; et al. n-type skutterudites (R,Ba,Yb)yCo4Sb12 (R=Sr, La, Mm, DD, SrMm, SrDD) approaching ZT≈2.0. Acta. Mater. 2014, 63, 30-43.

25. Fu, T.; Yue, X.; Wu, H.; et al. Enhanced thermoelectric performance of PbTe bulk materials with figure of merit zT >2 by multi-functional alloying. J. Mater. 2016, 2, 141-9.

26. Liu, H.; Shi, X.; Xu, F.; et al. Copper ion liquid-like thermoelectrics. Nat. Mater. 2012, 11, 422-5.

27. Zhong, B.; Zhang, Y.; Li, W.; et al. High superionic conduction arising from aligned large lamellae and large figure of merit in bulk Cu1.94Al0.02Se. Appl. Phys. Lett. 2014, 105, 123902.

28. Basu, R.; Bhattacharya, S.; Bhatt, R.; et al. Improved thermoelectric performance of hot pressed nanostructured n-type SiGe bulk alloys. J. Mater. Chem. A. 2014, 2, 6922.

29. Joshi, G.; Yan, X.; Wang, H.; Liu, W.; Chen, G.; Ren, Z. Enhancement in thermoelectric figure-of-merit of an N-type half-heusler compound by the nanocomposite approach. Adv. Energy. Mater. 2011, 1, 643-7.

30. Fu, C.; Bai, S.; Liu, Y.; et al. Realizing high figure of merit in heavy-band p-type half-Heusler thermoelectric materials. Nat. Commun. 2015, 6, 8144.

31. Perez-Taborda, J. A.; Muñoz, Rojo., M.; Maiz, J.; Neophytou, N.; Martin-Gonzalez, M. Ultra-low thermal conductivities in large-area Si-Ge nanomeshes for thermoelectric applications. Sci. Rep. 2016, 6, 32778.

32. Tan, G.; Shi, F.; Hao, S.; et al. Non-equilibrium processing leads to record high thermoelectric figure of merit in PbTe-SrTe. Nat. Commun. 2016, 7, 12167.

33. Iversen, B. B. Breaking thermoelectric performance limits. Nat. Mater. 2021, 20, 1309-10.

34. Hinterleitner, B.; Knapp, I.; Poneder, M.; et al. Thermoelectric performance of a metastable thin-film Heusler alloy. Nature 2019, 576, 85-90.

35. Hori, T.; Shiomi, J. Tuning phonon transport spectrum for better thermoelectric materials. Sci. Technol. Adv. Mater. 2019, 20, 10-25.

36. Moure, A.; Rull-bravo, M.; Abad, B.; et al. Thermoelectric Skutterudite/oxide nanocomposites: effective decoupling of electrical and thermal conductivity by functional interfaces. Nano. Energy. 2017, 31, 393-402.

37. Khitun, A.; Wang, K. L.; Chen, G. Thermoelectric figure of merit enhancement in a quantum dot superlattice. Nanotechnology 2000, 11, 327-31.

38. Zhao, L.; Dravid, V. P.; Kanatzidis, M. G. The panoscopic approach to high performance thermoelectrics. Energy. Environ. Sci. 2014, 7, 251-68.

39. He, J.; Kanatzidis, M. G.; Dravid, V. P. High performance bulk thermoelectrics via a panoscopic approach. Mater. Today. 2013, 16, 166-76.

40. Domínguez-adame, F.; Martín-gonzález, M.; Sánchez, D.; Cantarero, A. Nanowires: a route to efficient thermoelectric devices. Phys. E. 2019, 113, 213-25.

41. Hochbaum, A. I.; Chen, R.; Delgado, R. D.; et al. Enhanced thermoelectric performance of rough silicon nanowires. Nature 2008, 451, 163-7.

42. Chen, R.; Lee, J.; Lee, W.; Li, D. Thermoelectrics of nanowires. Chem. Rev. 2019, 119, 9260-302.

43. Böttner, H.; Chen, G.; Venkatasubramanian, R. Aspects of thin-film superlattice thermoelectric materials, devices, and applications. MRS. Bull. 2006, 31, 211-7.

44. Harman, T. C.; Taylor, P. J.; Walsh, M. P.; LaForge, B. E. Quantum dot superlattice thermoelectric materials and devices. Science 2002, 297, 2229-32.

45. Tang, J.; Wang, H. T.; Lee, D. H.; et al. Holey silicon as an efficient thermoelectric material. Nano. Lett. 2010, 10, 4279-83.

46. Duong, A. T.; Nguyen, V. Q.; Duvjir, G.; et al. Achieving ZT=2.2 with Bi-doped n-type SnSe single crystals. Nat. Commun. 2016, 7, 13713.

47. Dong, J.; Liu, Y.; Liu, J.; et al. Relating local structure to thermoelectric properties in Pb1-xGexBi2Te4. Chem. Mater. 2024, 36, 10831-40.

48. Khan, A.; Vlachos, N.; Kyratsi, T. High thermoelectric figure of merit of Mg2Si0.55Sn0.4Ge0.05 materials doped with Bi and Sb. Scr. Mater. 2013, 69, 606-9.

49. Khan, A.; Vlachos, N.; Hatzikraniotis, E.; et al. Thermoelectric properties of highly efficient Bi-doped Mg2Si1-x-ySnxGey materials. Acta. Mater. 2014, 77, 43-53.

50. Norizan, M. N.; Miyazaki, Y.; Ohishi, Y.; Muta, H.; Kurosaki, K.; Yamanaka, S. The nanometer-sized eutectic structure of Si/CrSi2 thermoelectric materials fabricated by rapid solidification. J. Electron. Mater. 2018, 47, 2330-6.

51. Xie, J.; Ohishi, Y.; Ichikawa, S.; Muta, H.; Kurosaki, K.; Yamanaka, S. Thermoelectric properties of Si/CoSi2 sub-micrometer composites prepared by melt-spinning technique. J. Appl. Phys. 2017, 121, 205107.

52. Tanusilp, S.; Kurosaki, K.; Yusufu, A.; Ohishi, Y.; Muta, H.; Yamanaka, S. Enhancement of thermoelectric properties of bulk Si by dispersing size-controlled VSi2. J. Electron. Mater. 2017, 46, 3249-55.

53. Tanusilp, S.; Ohishi, Y.; Muta, H.; et al. Ytterbium silicide (YbSi2): a promising thermoelectric material with a high power factor at room temperature. Phys. Rapid. Res. Lett. 2018, 12, 1700372.

54. Liu, W.; Chen, Z.; Zou, J. Eco-friendly higher manganese silicide thermoelectric materials: progress and future challenges. Adv. Energy. Mater. 2018, 8, 1800056.

55. Ruiz-Clavijo, A.; Caballero-Calero, O.; Manzano, C. V.; et al. 3D Bi2Te3 interconnected nanowire networks to increase thermoelectric efficiency. ACS. Appl. Energy. Mater. 2021, 4, 13556-66.

56. Anand, S.; Gurunathan, R.; Soldi, T.; Borgsmiller, L.; Orenstein, R.; Snyder, G. J. Thermoelectric transport of semiconductor full-Heusler VFe2Al. J. Mater. Chem. C. 2020, 8, 10174-84.

57. Neophytou, N.; Kosina, H. Optimizing thermoelectric power factor by means of a potential barrier. J. Appl. Phys. 2013, 114, 044315.

58. Shutoh, N.; Sakurada, S. Thermoelectric properties of the TiX(Zr0.5Hf0.5)1-XNiSn half-Heusler compounds. J. Alloys. Compd. 2005, 389, 204-8.

59. Sakurada, S.; Shutoh, N. Effect of Ti substitution on the thermoelectric properties of (Zr,Hf)NiSn half-Heusler compounds. Appl. Phys. Lett. 2005, 86, 082105.

60. Zebarjadi, M.; Joshi, G.; Zhu, G.; et al. Power factor enhancement by modulation doping in bulk nanocomposites. Nano. Lett. 2011, 11, 2225-30.

61. Zhou, C.; Yu, Y.; Lee, Y. L.; et al. Exceptionally high average power factor and thermoelectric figure of merit in n-type PbSe by the dual incorporation of Cu and Te. J. Am. Chem. Soc. 2020, 142, 15172-86.

62. Bahk, J.; Bian, Z.; Shakouri, A. Electron transport modeling and energy filtering for efficient thermoelectric Mg2Si1-xSnx solid solutions. Phys. Rev. B. 2014, 89, 075204.

63. Vineis, C. J.; Shakouri, A.; Majumdar, A.; Kanatzidis, M. G. Nanostructured thermoelectrics: big efficiency gains from small features. Adv. Mater. 2010, 22, 3970-80.

64. Vargiamidis, V.; Neophytou, N. Hierarchical nanostructuring approaches for thermoelectric materials with high power factors. Phys. Rev. B. 2019, 99, 045405.

65. Kim, R.; Lundstrom, M. S. Computational study of energy filtering effects in one-dimensional composite nano-structures. J. Appl. Phys. 2012, 111, 024508.

66. Gayner, C.; Amouyal, Y. Energy filtering of charge carriers: current trends, challenges, and prospects for thermoelectric materials. Adv. Funct. Mater. 2020, 30, 1901789.

67. Sakane, S.; Ishibe, T.; Taniguchi, T.; et al. Thermoelectric power factor enhancement based on carrier transport physics in ultimately phonon-controlled Si nanostructures. Mater. Today. Energy. 2019, 13, 56-63.

68. Ishibe, T.; Tomeda, A.; Watanabe, K.; et al. Methodology of thermoelectric power factor enhancement by controlling nanowire interface. ACS. Appl. Mater. Interfaces. 2018, 10, 37709-16.

69. Kuo, J. J.; Kang, S. D.; Imasato, K.; et al. Grain boundary dominated charge transport in Mg3Sb2-based compounds. Energy. Environ. Sci. 2018, 11, 429-34.

70. Neophytou, N.; Zianni, X.; Kosina, H.; Frabboni, S.; Lorenzi, B.; Narducci, D. Simultaneous increase in electrical conductivity and Seebeck coefficient in highly boron-doped nanocrystalline Si. Nanotechnology 2013, 24, 205402.

71. Lorenzi, B.; Narducci, D.; Tonini, R.; et al. Paradoxical enhancement of the power factor of polycrystalline silicon as a result of the formation of nanovoids. J. Electron. Mater. 2014, 43, 3812-6.

72. Bennett, N. S.; Byrne, D.; Cowley, A.; Neophytou, N. Dislocation loops as a mechanism for thermoelectric power factor enhancement in silicon nano-layers. Appl. Phys. Lett. 2016, 109, 173905.

73. Narducci, D.; Zulian, L.; Lorenzi, B.; Giulio, F.; Villa, E. Exceptional thermoelectric power factors in hyperdoped, fully dehydrogenated nanocrystalline silicon thin films. Appl. Phys. Lett. 2021, 119, 263903.

74. Neophytou, N.; Foster, S.; Vargiamidis, V.; Pennelli, G.; Narducci, D. Nanostructured potential well/barrier engineering for realizing unprecedentedly large thermoelectric power factors. Mater. Today. Phys. 2019, 11, 100159.

75. Vargiamidis, V.; Thesberg, M.; Neophytou, N. Theoretical model for the Seebeck coefficient in superlattice materials with energy relaxation. J. Appl. Phys. 2019, 126, 055105.

76. Masci, A.; Dimaggio, E.; Neophytou, N.; Narducci, D.; Pennelli, G. Large increase of the thermoelectric power factor in multi-barrier nanodevices. Nano. Energy. 2024, 132, 110391.

77. Bux, S. K.; Blair, R. G.; Gogna, P. K.; et al. Nanostructured bulk silicon as an effective thermoelectric material. Adv. Funct. Mater. 2009, 19, 2445-52.

78. Hong, S.; Park, J.; Jeon, S. G.; et al. Monolithic Bi1.5Sb0.5Te3 ternary alloys with a periodic 3D nanostructure for enhancing thermoelectric performance. J. Mater. Chem. C. 2017, 5, 8974-80.

79. Manzano, C. V.; Caballero-Calero, O.; Casari, D.; et al. ~5-Fold enhancement in the thermoelectric figure of merit of sustainable 3D-CuNi interconnected nanonetworks due to ultralow lattice thermal conductivity. Nanoscale 2025, 17, 6757-66.

80. Manzano, C. V.; Abad, B.; Muñoz, Rojo., M.; et al. Anisotropic effects on the thermoelectric properties of highly oriented electrodeposited Bi2Te3 films. Sci. Rep. 2016, 6, 19129.

81. Muñoz, Rojo., M.; Abad, B.; Manzano, C. V.; et al. Thermal conductivity of Bi2Te3 nanowires: how size affects phonon scattering. Nanoscale 2017, 9, 6741-7.

82. Ahmad, M.; Agarwal, K.; Munoz, S. G.; et al. Engineering interfacial effects in electron and phonon transport of Sb2Te3/MoS2 multilayer for thermoelectric ZT above 2.0. Adv. Funct. Mater. 2022, 32, 2206384.

83. Duan, J.; Wang, X.; Lai, X.; et al. High thermoelectricpower factor in graphene/hBN devices. Proc. Natl. Acad. Sci. USA. 2016, 113, 14272-6.

84. Radisavljevic, B.; Kis, A. Mobility engineering and a metal-insulator transition in monolayer MoS2. Nat. Mater. 2013, 12, 815-20.

85. Baugher, B. W.; Churchill, H. O.; Yang, Y.; Jarillo-Herrero, P. Intrinsic electronic transport properties of high-quality monolayer and bilayer MoS2. Nano. Lett. 2013, 13, 4212-6.

86. Yu, X.; Liu, D.; Quan, Y.; et al. Electronic correlation effects and orbital density wave in the layered compound 1T-TaS2. Phys. Rev. B. 2017, 96, 125138.

87. Isaacs, E. B.; Marianetti, C. A. Electronic correlations in monolayer VS2. Phys. Rev. B. 2016, 94, 035120.

88. Withers, F.; Del Pozo-Zamudio, O.; Mishchenko, A.; et al. Light-emitting diodes by band-structure engineering in van der Waals heterostructures. Nat. Mater. 2015, 14, 301-6.

89. Zhang, Q.; Chen, Y.; Zhang, C.; et al. Bandgap renormalization and work function tuning in MoSe2/hBN/Ru(0001) heterostructures. Nat. Commun. 2016, 7, 13843.

90. Vargiamidis, V.; Vasilopoulos, P.; Tahir, M.; Neophytou, N. Berry curvature, orbital magnetization, and Nernst effect in biased bilayer WSe2. Phys. Rev. B. 2020, 102, 235426.

91. Yu, X. Q.; Zhu, Z. G.; Su, G.; Jauho, A. P. Thermally driven pure spin and valley currents via the anomalous nernst effect in monolayer group-VI dichalcogenides. Phys. Rev. Lett. 2015, 115, 246601.

92. Sharma, G. Tunable topological Nernst effect in two-dimensional transition-metal dichalcogenides. Phys. Rev. B. 2018, 98, 075416.

93. Liang, T.; Lin, J.; Gibson, Q.; et al. Anomalous nernst effect in the dirac semimetal Cd3As2. Phys. Rev. Lett. 2017, 118, 136601.

94. Son, J. S.; Choi, M. K.; Han, M. K.; et al. n-type nanostructured thermoelectric materials prepared from chemically synthesized ultrathin Bi2Te3 nanoplates. Nano. Lett. 2012, 12, 640-7.

95. Min, Y.; Park, G.; Kim, B.; et al. Synthesis of multishell nanoplates by consecutive epitaxial growth of Bi2Se3 and Bi2Te3 nanoplates and enhanced thermoelectric properties. ACS. Nano. 2015, 9, 6843-53.

96. Yoshida, M.; Iizuka, T.; Saito, Y.; et al. Gate-optimized thermoelectric power factor in ultrathin WSe2 single crystals. Nano. Lett. 2016, 16, 2061-5.

97. Gómez-Navarro, C.; Meyer, J. C.; Sundaram, R. S.; et al. Atomic structure of reduced graphene oxide. Nano. Lett. 2010, 10, 1144-8.

98. Chen, J. H.; Cullen, W. G.; Jang, C.; Fuhrer, M. S.; Williams, E. D. Defect scattering in graphene. Phys. Rev. Lett. 2009, 102, 236805.

99. Tu, N. D. K.; Choi, J.; Park, C. R.; Kim, H. Remarkable conversion between n- and p-type reduced graphene oxide on varying the thermal annealing temperature. Chem. Mater. 2015, 27, 7362-9.

100. Kim, J.; Yoon, G.; Kim, J.; et al. Extremely large, non-oxidized graphene flakes based on spontaneous solvent insertion into graphite intercalation compounds. Carbon 2018, 139, 309-16.

101. Kim, J.; Han, N. M.; Kim, J.; Lee, J.; Kim, J. K.; Jeon, S. Highly conductive and fracture-resistant epoxy composite based on non-oxidized graphene flake aerogel. ACS. Appl. Mater. Interfaces. 2018, 10, 37507-16.

102. Novak, T. G.; Kim, J.; Song, S. H.; et al. Fast P3HT exciton dissociation and absorption enhancement of organic solar cells by PEG-functionalized graphene quantum dots. Small 2016, 12, 994-9.

103. Park, M.; Yoon, H.; Lee, J.; et al. Efficient solid-state photoluminescence of graphene quantum dots embedded in boron oxynitride for AC-electroluminescent device. Adv. Mater. 2018, 30, e1802951.

104. Novak, T. G.; Kim, J.; Kim, J.; et al. Complementary n-type and p-type graphene films for high power factor thermoelectric generators. Adv. Funct. Mater. 2020, 30, 2001760.

105. Oh, J. Y.; Lee, J. H.; Han, S. W.; et al. Chemically exfoliated transition metal dichalcogenide nanosheet-based wearable thermoelectric generators. Energy. Environ. Sci. 2016, 9, 1696-705.

106. Li, X.; Wang, T.; Jiang, F.; et al. Optimizing thermoelectric performance of MoS2 films by spontaneous noble metal nanoparticles decoration. J. Alloys. Compd. 2019, 781, 744-50.

107. Shi, D.; Wang, G.; Li, C.; Shen, X.; Nie, Q. Preparation and thermoelectric properties of MoTe2 thin films by magnetron co-sputtering. Vacuum 2017, 138, 101-4.

108. Gogotsi, Y.; Anasori, B. The rise of MXenes. ACS. Nano. 2019, 13, 8491-4.

109. Kim, H.; Anasori, B.; Gogotsi, Y.; Alshareef, H. N. Thermoelectric properties of two-dimensional molybdenum-based MXenes. Chem. Mater. 2017, 29, 6472-9.

110. Cha, J.; Zhou, C.; Cho, S. P.; Park, S. H.; Chung, I. Ultrahigh power factor and electron mobility in n-type Bi2Te3-x%Cu stabilized under excess Te condition. ACS. Appl. Mater. Interfaces. 2019, 11, 30999-1008.

111. Zheng, Z.; Shi, X.; Ao, D.; et al. Harvesting waste heat with flexible Bi2Te3 thermoelectric thin film. Nat. Sustain. 2023, 6, 180-91.

112. Manzano, C. V.; Llorente del Olmo, C.; Caballero-Calero, O.; Martín-González, M. High thermoelectric efficiency in electrodeposited silver selenide films: from Pourbaix diagram to a flexible thermoelectric module. Sustain. Energy. Fuels. 2021, 5, 4597-605.

113. Xin, J.; Tang, Y.; Liu, Y.; Zhao, X.; Pan, H.; Zhu, T. Valleytronics in thermoelectric materials. NPJ. Quant. Mater. 2018, 3, 83.

114. Slack, G. A. New materials and performance limits for thermoelectric cooling. In: Rowe D, editor. CRC handbook of thermoelectrics. CRC Press; 1995. Available from: https://www.taylorfrancis.com/chapters/edit/10.1201/9781420049718-34/new-materials-performance-limits-thermoelectric-cooling-glen-slack [Last accessed on 5 Jun 2025].

115. Mahan, G. D. Good thermoelectrics. In: Solid state physics. Elsevier; 1998, pp 81-157. Available from: https://www.sciencedirect.com/science/article/abs/pii/S0081194708601903 [Last accessed on 19 Jun 2025].

116. Goldsmid, H. J. Thermoelectric refrigeration; 1964. Available from: https://link.springer.com/book/10.1007/978-1-4899-5723-8 [Last accessed on 19 Jun 2025].

117. Zhang, X.; Bu, Z.; Shi, X.; et al. Electronic quality factor for thermoelectrics. Sci. Adv. 2020, 6, eabc0726.

118. Graziosi, P.; Kumarasinghe, C.; Neophytou, N. Material descriptors for the discovery of efficient thermoelectrics. ACS. Appl. Energy. Mater. 2020, 3, 5913-26.

119. Graziosi, P.; Kumarasinghe, C.; Neophytou, N. Impact of the scattering physics on the power factor of complex thermoelectric materials. J. Appl. Phys. 2019, 126, 155701.

120. Kumarasinghe, C.; Neophytou, N. Band alignment and scattering considerations for enhancing the thermoelectric power factor of complex materials: the case of Co-based half-Heusler alloys. Phys. Rev. B. 2019, 99, 195202.

121. Akhtar, S. E. A.; Neophytou, N. Conditions for thermoelectric power factor improvements upon band alignment in complex bandstructure materials. ACS. Appl. Energy. Mater. 2025, 8, 1609-19.

122. Park, J.; Dylla, M.; Xia, Y.; Wood, M.; Snyder, G. J.; Jain, A. When band convergence is not beneficial for thermoelectrics. Nat. Commun. 2021, 12, 3425.

123. D'souza, R.; Cao, J.; Querales-flores, J. D.; Fahy, S.; Savić, I. Electron-phonon scattering and thermoelectric transport in p-type PbTe from first principles. Phys. Rev. B. 2020, 102, 115204.

124. Pei, Y.; Shi, X.; LaLonde, A.; Wang, H.; Chen, L.; Snyder, G. J. Convergence of electronic bands for high performance bulk thermoelectrics. Nature 2011, 473, 66-9.

125. Liu, W.; Tan, X.; Yin, K.; et al. Convergence of conduction bands as a means of enhancing thermoelectric performance of n-type Mg2Si1-xSnx solid solutions. Phys. Rev. Lett. 2012, 108, 166601.

126. Xiao, Y.; Zhao, L. Charge and phonon transport in PbTe-based thermoelectric materials. NPJ. Quant. Mater. 2018, 3, 127.

127. Tan, X.; Shao, H.; Hu, T.; Liu, G. Q.; Ren, S. F. Theoretical understanding on band engineering of Mn-doped lead chalcogenides PbX (X = Te, Se, S). J. Phys. Condens. Matter. 2015, 27, 095501.

128. Brod, M. K.; Guo, S.; Zhang, Y.; Snyder, G. J. Explaining the electronic band structure of half-Heusler thermoelectric semiconductors for engineering high valley degeneracy. MRS. Bull. 2022, 47, 573-83.

129. Tang, Y.; Gibbs, Z. M.; Agapito, L. A.; et al. Convergence of multi-valley bands as the electronic origin of high thermoelectric performance in CoSb3 skutterudites. Nat. Mater. 2015, 14, 1223-8.

130. Querales-flores, J. D.; Cao, J.; Fahy, S.; Savić, I. Temperature effects on the electronic band structure of PbTe from first principles. Phys. Rev. Mater. 2019, 3, 055405.

131. He, W.; Wang, D.; Wu, H.; et al. High thermoelectric performance in low-cost SnS0.91Se0.09 crystals. Science 2019, 365, 1418-24.

132. Xiao, Y.; Wang, D.; Zhang, Y.; et al. Band sharpening and band alignment enable high quality factor to enhance thermoelectric performance in n-type PbS. J. Am. Chem. Soc. 2020, 142, 4051-60.

133. Kim, H.; Kaviany, M. Effect of thermal disorder on high figure of merit in PbTe. Phys. Rev. B. 2012, 86, 045213.

134. Troncoso, J. F.; Aguado-Puente, P.; Kohanoff, J. Effect of intrinsic defects on the thermal conductivity of PbTe from classical molecular dynamics simulations. J. Phys. Condens. Matter. 2020, 32, 045701.

135. Pei, Y.; Wang, H.; Gibbs, Z. M.; Lalonde, A. D.; Snyder, G. J. Thermopower enhancement in Pb1-xMnxTe alloys and its effect on thermoelectric efficiency. NPG. Asia. Mater. 2012, 4, e28.

136. Chen, S.; Gong, X. G.; Walsh, A.; Wei, S. Electronic structure and stability of quaternary chalcogenide semiconductors derived from cation cross-substitution of II-VI and I-III-VI2 compounds. Phys. Rev. B. 2009, 79, 165211.

137. Zhang, J.; Liu, R.; Cheng, N.; et al. High-performance pseudocubic thermoelectric materials from non-cubic chalcopyrite compounds. Adv. Mater. 2014, 26, 3848-53.

138. Zeier, W. G.; Zhu, H.; Gibbs, Z. M.; Ceder, G.; Tremel, W.; Snyder, G. J. Band convergence in the non-cubic chalcopyrite compounds Cu2MGeSe4. J. Mater. Chem. C. 2014, 2, 10189-94.

139. Garmroudi, F.; Parzer, M.; Riss, A.; et al. Anderson transition in stoichiometric Fe2VAl: high thermoelectric performance from impurity bands. Nat. Commun. 2022, 13, 3599.

140. Garmroudi, F.; Parzer, M.; Riss, A.; et al. Large thermoelectric power factors by opening the band gap in semimetallic Heusler alloys. Mater. Today. Phys. 2022, 27, 100742.

141. Domínguez-Vázquez, J. M.; Caballero-Calero, O.; Lohani, K.; Plata, J. J.; Antonio, M. Thermoelectric performance boost by chemical order in epitaxial L21 (100) and (110) oriented undoped Fe2VAl Thin films: an experimental and theoretical study. arXiv 2025, 2503.21575.

142. Markov, M.; Rezaei, S. E.; Sadeghi, S. N.; Esfarjani, K.; Zebarjadi, M. Thermoelectric properties of semimetals. Phys. Rev. Mater. 2019, 3, 095401.

143. Graziosi, P.; Neophytou, N. Ultra-high thermoelectric power factors in narrow gap materials with asymmetric bands. J. Phys. Chem. C. 2020, 124, 18462-73.

144. Lo, C. T.; Song, S.; Tseng, Y. C.; Tritt, T. M.; Bogdan, J.; Mozharivskyj, Y. Microstructural instability and its effects on thermoelectric properties of SnSe and Na-doped SnSe. ACS. Appl. Mater. Interfaces. 2024, 16, 49442-53.

145. Lu, W.; Li, S.; Xu, R.; et al. Boosting thermoelectric performance of SnSe via Tailoring band structure, suppressing bipolar thermal conductivity, and introducing large mass fluctuation. ACS. Appl. Mater. Interfaces. 2019, 11, 45133-41.

146. Wei, B.; Zhang, J.; Lin, L.; et al. Enhancing electrical transport performance of polycrystalline tin selenide by doping different elements. Phys. Status. Solidi. 2024, 221, 2300717.

147. Hasdeo, E. H.; Krisna, L. P. A.; Hanna, M. Y.; Gunara, B. E.; Hung, N. T.; Nugraha, A. R. T. Optimal band gap for improved thermoelectric performance of two-dimensional Dirac materials. J. Appl. Phys. 2019, 126, 035109.

148. Heremans, J. P.; Jovovic, V.; Toberer, E. S.; et al. Enhancement of thermoelectric efficiency in PbTe by distortion of the electronic density of states. Science 2008, 321, 554-7.

149. Xiong, K.; Lee, G.; Gupta, R. P.; Wang, W.; Gnade, B. E.; Cho, K. Behaviour of group IIIA impurities in PbTe: implications to improve thermoelectric efficiency. J. Phys. D. Appl. Phys. 2010, 43, 405403.

150. Wiendlocha, B. Fermi surface and electron dispersion of PbTe doped with resonant Tl impurity from KKR-CPA calculations. Phys. Rev. B. 2013, 8, 205205.

151. Tan, G.; Shi, F.; Hao, S.; et al. Codoping in SnTe: enhancement of thermoelectric performance through synergy of resonance levels and band convergence. J. Am. Chem. Soc. 2015, 137, 5100-12.

152. Jaworski, C. M.; Kulbachinskii, V.; Heremans, J. P. Resonant level formed by tin in Bi2Te3 and the enhancement of room-temperature thermoelectric power. Phys. Rev. B. 2009, 80, 233201.

153. Cui, J.; Li, Y.; Du, Z.; Meng, Q.; Zhou, H. Promising defect thermoelectric semiconductors Cu1-xGaSbxTe2 (x = 0-0.1) with the chalcopyrite structure. J. Mater. Chem. A. 2013, 1, 677-83.

154. Lan, J. L.; Liu, Y. C.; Zhan, B.; et al. Enhanced thermoelectric properties of Pb-doped BiCuSeO ceramics. Adv. Mater. 2013, 25, 5086-90.

155. Qiu, P.; Yang, J.; Huang, X.; Chen, X.; Chen, L. Effect of antisite defects on band structure and thermoelectric performance of ZrNiSn half-Heusler alloys. Appl. Phys. Lett. 2010, 96, 152105.

156. Fang, T.; Li, X.; Hu, C.; et al. Complex band structures and lattice dynamics of Bi2Te3 -based compounds and solid solutions. Adv. Funct. Mater. 2019, 29, 1900677.

157. Toriyama, M. Y.; Brod, M. K.; Gomes, L. C.; et al. Tuning valley degeneracy with band inversion. J. Mater. Chem. A. 2022, 10, 1588-95.

158. Yuan, J.; Cai, Y.; Shen, L.; et al. One-dimensional thermoelectrics induced by Rashba spin-orbit coupling in two-dimensional BiSb monolayer. Nano. Energy. 2018, 52, 163-70.

159. Ugeda, M. M.; Pulkin, A.; Tang, S.; et al. Observation of topologically protected states at crystalline phase boundaries in single-layer WSe2. Nat. Commun. 2018, 9, 3401.

160. Chen, P.; Pai, W. W.; Chan, Y. H.; et al. Large quantum-spin-Hall gap in single-layer 1T' WSe2. Nat. Commun. 2018, 9, 2003.

161. Ikhlas, M.; Tomita, T.; Koretsune, T.; et al. Large anomalous Nernst effect at room temperature in a chiral antiferromagnet. Nature. Phys. 2017, 13, 1085-90.

162. Guin, S. N.; Vir, P.; Zhang, Y.; et al. Zero-field nernst effect in a ferromagnetic kagome-lattice weyl-semimetal Co3Sn2S2. Adv. Mater. 2019, 31, e1806622.

163. Guin, S. N.; Manna, K.; Noky, J.; et al. Anomalous Nernst effect beyond the magnetization scaling relation in the ferromagnetic Heusler compound Co2MnGa. NPG. Asia. Mater. 2019, 11, 116.

164. Slade, T. J.; Anand, S.; Wood, M.; et al. Charge-carrier-mediated lattice softening contributes to high zT in thermoelectric semiconductors. Joule 2021, 5, 1168-82.

165. Cheikh, D.; Hogan, B. E.; Vo, T.; et al. Praseodymium telluride: a high-temperature, high-ZT thermoelectric material. Joule 2018, 2, 698-709.

166. Garmroudi, F.; Parzer, M.; Riss, A.; et al. High thermoelectric performance in metallic NiAu alloys via interband scattering. Sci. Adv. 2023, 9, eadj1611.

167. Zhu, H.; He, R.; Mao, J.; et al. Discovery of ZrCoBi based half Heuslers with high thermoelectric conversion efficiency. Nat. Commun. 2018, 9, 2497.

168. Rogl, G.; Yubuta, K.; Romaka, V.; et al. High-ZT half-Heusler thermoelectrics, Ti0.5Zr0.5NiSn and Ti0.5Zr0.5NiSn0.98Sb0.02: physical properties at low temperatures. Acta. Mater. 2019, 166, 466-83.

169. Tamaki, H.; Sato, H. K.; Kanno, T. Isotropic conduction network and defect chemistry in Mg3+δSb2-based layered Zintl compounds with high thermoelectric performance. Adv. Mater. 2016, 28, 10182-7.

170. Mao, J.; Shuai, J.; Song, S.; et al. Manipulation of ionized impurity scattering for achieving high thermoelectric performance in n-type Mg3Sb2-based materials. Proc. Natl. Acad. Sci. USA. 2017, 114, 10548-53.

171. Imasato, K.; Fu, C.; Pan, Y.; et al. Metallic n-type Mg3Sb2 single crystals demonstrate the absence of ionized impurity scattering and enhanced thermoelectric performance. Adv. Mater. 2020, 32, e1908218.

172. Luo, T.; Kuo, J. J.; Griffith, K. J.; et al. Nb-mediated grain growth and grain-boundary engineering in Mg3Sb2-based thermoelectric materials. Adv. Funct. Mater. 2021, 31, 2100258.

173. Uchida, K.; Xiao, J.; Adachi, H.; et al. Spin Seebeck insulator. Nat. Mater. 2010, 9, 894-7.

174. Uchida, K.; Ishida, M.; Kikkawa, T.; Kirihara, A.; Murakami, T.; Saitoh, E. Longitudinal spin Seebeck effect: from fundamentals to applications. J. Phys. Condens. Matter. 2014, 26, 343202.

175. Kikkawa, T.; Shen, K.; Flebus, B.; et al. Magnon polarons in the Spin Seebeck effect. Phys. Rev. Lett. 2016, 117, 207203.

176. Meier, D.; Reinhardt, D.; van Straaten, M.; et al. Longitudinal spin Seebeck effect contribution in transverse spin Seebeck effect experiments in Pt/YIG and Pt/NFO. Nat. Commun. 2015, 6, 8211.

177. Holanda, J.; Alves, Santos., O.; Cunha, R. O.; et al. Longitudinal spin Seebeck effect in permalloy separated from the anomalous Nernst effect: theory and experiment. Phys. Rev. B. 2017, 95, 214421.

178. Kimberly, T. Q.; Ciesielski, K. M.; Qi, X.; Toberer, E. S.; Kauzlarich, S. M. High thermoelectric performance in 2D Sb2Te3 and Bi2Te3 nanoplate composites enabled by energy carrier filtering and low thermal conductivity. ACS. Appl. Electron. Mater. 2024, 6, 2816-25.

179. Cao, T.; Shi, X.; Li, M.; et al. Advances in bismuth-telluride-based thermoelectric devices: Progress and challenges. eScience 2023, 3, 100122.

180. Rogl, G.; Rogl, P. Skutterudites, a most promising group of thermoelectric materials. Curr. Opin. Green. Sustain. Chem. 2017, 4, 50-7.

181. Rull-Bravo, M.; Moure, A.; Fernández, J. F.; Martín-González, M. Skutterudites as thermoelectric materials: revisited. RSC. Adv. 2015, 5, 41653-67.

182. Balvanz, A.; Qu, J.; Baranets, S.; Ertekin, E.; Gorai, P.; Bobev, S. New n-type Zintl phases for thermoelectrics: discovery, structural characterization, and band engineering of the compounds A2CdP2 (A = Sr, Ba, Eu). Chem. Mater. 2020, 32, 10697-707.

183. Islam, M. M.; Kauzlarich, S. M. The potential of arsenic-based Zintl phases as thermoelectric materials: structure & thermoelectric properties. Zeitschrift. Anorg. Allge. Chemie. 2023, 649, e202300149.

184. Kauzlarich, S. M.; Brown, S. R.; Snyder, G. J. Zintl phases for thermoelectric devices. Dalton. Trans. 2007, 21, 2099-107.

185. Dolyniuk, J.; Owens-Baird, B.; Wang, J.; Zaikina, J. V.; Kovnir, K. Clathrate thermoelectrics. Mater. Sci. Eng. R. Rep. 2016, 108, 1-46.

186. Christensen, M.; Johnsen, S.; Iversen, B. B. Thermoelectric clathrates of type I. Dalton. Trans. 2010, 39, 978-92.

187. Zhang, Y.; Brorsson, J.; Qiu, R.; Palmqvist, A. E. C. Enhanced thermoelectric performance of Ba8Ga16Ge30 clathrate by modulation doping and improved carrier mobility. Adv. Electron. Mater. 2021, 7, 2000782.

188. Gui, Z.; Wang, G.; Wang, H.; et al. Large improvement of thermoelectric performance by magnetism in co-based full-heusler alloys. Adv. Sci. 2023, 10, e2303967.

189. Guo, S.; Yue, J.; Li, J.; Liu, Y.; Cui, T. Novel room-temperature full-Heusler thermoelectric material Li2TlSb. Phys. Chem. Chem. Phys. 2024, 26, 6774-81.

190. do Nascimento, J. C. A.; Kerrigan, A.; Hasnip, P. J.; Lazarov, V. K. Significant improvement of the Seebeck coefficient of Fe2Val with antisite defects. Mater. Today. Commun. 2022, 31, 103510.

191. Ojha, A.; Sabat, R. K.; Bathula, S. Advancement in half-Heusler thermoelectric materials and strategies to enhance the thermoelectric performance. Mater. Sci. Semicond. Proc. 2024, 171, 107996.

192. Zhu, H.; Li, W.; Nozariasbmarz, A.; et al. Half-Heusler alloys as emerging high power density thermoelectric cooling materials. Nat. Commun. 2023, 14, 3300.

193. Li, W.; Ghosh, S.; Liu, N.; Poudel, B. Half-Heusler thermoelectrics: advances from materials fundamental to device engineering. Joule 2024, 8, 1274-311.

194. Nozariasbmarz, A.; Agarwal, A.; Coutant, Z. A.; et al. Thermoelectric silicides: a review. Jpn. J. Appl. Phys. 2017, 56, 05DA04.

195. Kim, G.; Shin, H.; Lee, J.; Lee, W. A review on silicide-based materials: thermoelectric and mechanical properties. Met. Mater. Int. 2021, 27, 2205-19.

196. Ge, B.; Li, R.; Wang, G.; Zhu, M.; Zhou, C. Oxide semiconductors for thermoelectric: the challenges and future. J. Am. Ceram. Soc. 2024, 107, 1985-95.

197. Assadi, M. H. N.; Gutiérrez, Moreno., J. J.; Fronzi, M. High-performance thermoelectric oxides based on spinel structure. ACS. Appl. Energy. Mater. 2020, 3, 5666-74.

198. Zhang, Y.; Ohta, H. Recent progress in thermoelectric layered cobalt oxide thin films. NPG. Asia. Mater. 2023, 15, 520.

199. Faizan, M.; Li, S.; Liu, Z.; et al. Ultralow lattice thermal conductivity and superior thermoelectric performance in AgAlS2 and AgAlSe2. J. Mater. Chem. C. 2025, 13, 2853-67.

200. Baláž, P.; Dutková, E.; Levinský, P.; et al. Enhanced thermoelectric performance of chalcopyrite nanocomposite via co-milling of synthetic and natural minerals. Mater. Lett. 2020, 275, 128107.

201. Tang, Q.; Jiang, B.; Wang, K.; et al. High-entropy thermoelectric materials. Joule 2024, 8, 1641-66.

202. Ren, K.; Huo, W.; Chen, S.; Cheng, Y.; Wang, B.; Zhang, G. High-entropy alloys in thermoelectric application: a selective review. Chinese. Phys. B. 2024, 33, 057202.

203. Pallecchi, I.; Manca, N.; Patil, B.; Pellegrino, L.; Marré, D. Review on thermoelectric properties of transition metal dichalcogenides. Nano. Futur. 2020, 4, 032008.

204. Zhou, W.; Gong, H.; Jin, X.; Chen, Y.; Li, H.; Liu, S. Recent progress of two-dimensional transition metal dichalcogenides for thermoelectric applications. Front. Phys. 2022, 10, 842789.

205. Chen, K.; Wang, X.; Mo, D.; Lyu, S. Thermoelectric Properties of transition metal dichalcogenides: from monolayers to nanotubes. J. Phys. Chem. C. 2015, 119, 26706-11.

206. Zhang, G.; Zhang, Y. Thermoelectric properties of two-dimensional transition metal dichalcogenides. J. Mater. Chem. C. 2017, 5, 7684-98.

207. Chetty, R.; Bali, A.; Mallik, R. C. Tetrahedrites as thermoelectric materials: an overview. J. Mater. Chem. C. 2015, 3, 12364-78.

208. Weller, D. P.; Morelli, D. T. Tetrahedrite thermoelectrics: from fundamental science to facile synthesis. Front. Electron. Mater. 2022, 2, 913280.

209. Mulla, R.; Živković, A.; Warwick, M. E. A.; de Leeuw, N. H.; Dunnill, C. W.; Barron, A. R. High performance thermoelectrics from low-cost and abundant CuS/CuI composites. J. Mater. Chem. A. 2024, 12, 2974-85.

210. Gu, Y.; Ai, W.; Zhao, Y.; et al. Remarkable thermoelectric property enhancement in Cu2SnS3-CuCo2S4 nanocomposites via 3D modulation doping. J. Mater. Chem. A. 2021, 9, 16928-35.

211. Yen, W.; Wang, K.; Wu, H. Hybridization of n-type Bi2Te3 crystals with liquid-like copper chalcogenide elicits record-high thermoelectric performance. Mater. Today. Phys. 2023, 34, 101065.

212. Russ, B.; Glaudell, A.; Urban, J. J.; Chabinyc, M. L.; Segalman, R. A. Organic thermoelectric materials for energy harvesting and temperature control. Nat. Rev. Mater. 2016, 1, 201650.

213. Finn, P. A.; Asker, C.; Wan, K.; Bilotti, E.; Fenwick, O.; Nielsen, C. B. Thermoelectric materials: current status and future challenges. Front. Electron. Mater. 2021, 1, 677845.

214. Artini, C.; Pennelli, G.; Graziosi, P.; et al. Roadmap on thermoelectricity. Nanotechnology 2023, 34, 292001.

215. Singh Bhathal Singh B. Thermoelectric generators: design, operation, and applications. In: Abed Ismail I, editor. New materials and devices for thermoelectric power generation. IntechOpen; 2024.

216. Mao, J.; Chen, G.; Ren, Z. Thermoelectric cooling materials. Nat. Mater. 2021, 20, 454-61.

217. Han, Z.; Li, J.; Jiang, F.; et al. Room-temperature thermoelectric materials: challenges and a new paradigm. J. Mater. 2022, 8, 427-36.

218. Perez-Taborda, J. A.; Caballero-Calero, O.; Vera-Londono, L.; Briones, F.; Martin-Gonzalez, M. High thermoelectric zT in n-type silver selenide films at room temperature. Adv. Energy. Mater. 2018, 8, 1702024.

219. Liu, M.; Zhang, X.; Zhang, S.; Pei, Y. Ag2Se as a tougher alternative to n-type Bi2Te3 thermoelectrics. Nat. Commun. 2024, 15, 6580.

220. Abusa, Y.; Yox, P.; Viswanathan, G.; et al. A recipe for a great meal: a benchtop route from elemental Se to superior thermoelectric β-Ag2Se. J. Am. Chem. Soc. 2024, 146, 11382-931.

221. Khan, J. A.; Maithani, Y.; Singh, J. P. Ag2Se nanorod arrays with ultrahigh room temperature thermoelectric performance and superior mechanical properties. ACS. Appl. Mater. Interfaces. 2023, 15, 35001-13.

222. Chen, J.; Sun, Q.; Bao, D.; et al. Hierarchical structures advance thermoelectric properties of porous n-type β-Ag2Se. ACS. Appl. Mater. Interfaces. 2020, 12, 51523-9.

223. Santhosh, R.; Harish, S.; Abinaya, R.; et al. Enhanced thermoelectric performance of hot-pressed n-type Ag2Se nanostructures by controlling the intrinsic lattice defects. CrystEngComm 2023, 25, 3317-27.

224. Jia, B.; Wu, D.; Xie, L.; et al. Pseudo-nanostructure and trapped-hole release induce high thermoelectric performance in PbTe. Science 2024, 384, 81-6.

225. Sauerschnig, P.; Saitou, N.; Koshino, M.; Ishida, T.; Yamamoto, A.; Ohta, M. Improving the long-term stability of PbTe-based thermoelectric modules: from nanostructures to packaged module architecture. ACS. Appl. Mater. Interfaces. 2024, 16, 46421-32.

226. Liu, H.; Sun, Q.; Zhong, Y.; et al. High-performance in n-type PbTe-based thermoelectric materials achieved by synergistically dynamic doping and energy filtering. Nano. Energy. 2022, 91, 106706.

227. Yang, W.; Le, W.; Lyu, J.; et al. Enhancing Thermoelectric performance in P-type Sb2Te3-based compounds through Nb-Ag co-doping with donor-like effect. Small 2024, 20, e2307798.

228. Wang, J.; Zhou, C.; Yu, Y.; et al. Enhancing thermoelectric performance of Sb2Te3 through swapped bilayer defects. Nano. Energy. 2021, 79, 105484.

229. Liu, Z.; Gao, W.; Oshima, H.; Nagase, K.; Lee, C. H.; Mori, T. Maximizing the performance of n-type Mg3Bi2 based materials for room-temperature power generation and thermoelectric cooling. Nat. Commun. 2022, 13, 1120.

230. Tiadi, M.; Trivedi, V.; Kumar, S.; et al. Enhanced thermoelectric efficiency in P-type Mg3Sb2: role of monovalent atoms codoping at Mg sites. ACS. Appl. Mater. Interfaces. 2023, 15, 20175-90.

231. Xie, Y.; Deng, Q.; Yang, Y.; et al. Pseudo-Nanostructuring and grain refinement enhance the near-room-temperature thermoelectric performance in n-type PbSe. Small 2025, 21, e2408852.

232. Jiang, J.; Zhu, H.; Niu, Y.; et al. Achieving high room-temperature thermoelectric performance in cubic AgCuTe. J. Mater. Chem. A. 2020, 8, 4790-9.

233. Liang, T.; Su, X.; Yan, Y.; et al. Panoscopic approach for high-performance Te-doped skutterudite. NPG. Asia. Mater. 2017, 9, e352.

234. Li, D.; Shi, X. L.; Zhu, J.; et al. High-performance flexible p-type Ce-filled Fe3CoSb12 skutterudite thin film for medium-to-high-temperature applications. Nat. Commun. 2024, 15, 4242.

235. Zhang, Z.; Gurtaran, M.; Dong, H. Low-cost magnesium-based thermoelectric materials: progress, challenges, and enhancements. ACS. Appl. Energy. Mater. 2024, 7, 5629-46.

236. de Boor, J.; Gupta, S.; Kolb, H.; Dasgupta, T.; Müller, E. Thermoelectric transport and microstructure of optimized Mg2Si0.8Sn0.2. J. Mater. Chem. C. 2015, 3, 10467-75.

237. Cheng, K.; Bu, Z.; Tang, J.; et al. Efficient Mg2Si0.3Sn0.7 thermoelectrics demonstrated for recovering heat of about 600 K. Mater. Today. Phys. 2022, 28, 100887.

238. Dong, J.; Sun, F.; Tang, H.; et al. Medium-temperature thermoelectric GeTe: vacancy suppression and band structure engineering leading to high performance. Energy. Environ. Sci. 2019, 12, 1396-403.

239. Zhang, Z.; Zhao, K.; Wei, T.; Qiu, P.; Chen, L.; Shi, X. Cu2Se-based liquid-like thermoelectric materials: looking back and stepping forward. Energy. Environ. Sci. 2020, 13, 3307-29.

240. Wu, H. J.; Zhao, L. D.; Zheng, F. S.; et al. Broad temperature plateau for thermoelectric figure of merit ZT>2 in phase-separated PbTe0.7S0.3. Nat. Commun. 2014, 5, 4515.

241. Wasscher, J.; Albers, W.; Haas, C. Simple evaluation of the maximum thermoelectric figure of merit, with application to mixed crystals SnS1-xSex. Solid. State. Electron. 1963, 6, 261-4.

242. Zhao, L. D.; Tan, G.; Hao, S.; et al. Ultrahigh power factor and thermoelectric performance in hole-doped single-crystal SnSe. Science 2016, 351, 141-4.

243. Chang, C.; Wu, M.; He, D.; et al. 3D charge and 2D phonon transports leading to high out-of-plane ZT in n-type SnSe crystals. Science 2018, 360, 778-83.

244. Zhao, L.; Chang, C.; Tan, G.; Kanatzidis, M. G. SnSe: a remarkable new thermoelectric material. Energy. Environ. Sci. 2016, 9, 3044-60.

245. Nguyen, V. Q.; Trinh, T. L.; Chang, C.; et al. Unidentified major p-type source in SnSe: Multivacancies. NPG. Asia. Mater. 2022, 14, 393.

246. Siddique, S.; Gong, Y.; Abbas, G.; et al. Realizing high thermoelectric performance in p-type SnSe crystals via convergence of multiple electronic valence bands. ACS. Appl. Mater. Interfaces. 2022, 14, 4091-9.

247. Gainza, J.; Serrano-sánchez, F.; Rodrigues, J. E.; et al. High-performance n-type SnSe thermoelectric polycrystal prepared by arc-melting. Cell. Rep. Phys. Sci. 2020, 1, 100263.

248. Viet Chien, N.; Min Park, H.; Shin, H.; Yong Song, J. Synthesis of n-type SnSe polycrystals with high and isotropic thermoelectric performance. J. Alloys. Compd. 2023, 937, 168043.

249. Yang, X.; Shi, T.; Li, W.; Ma, X.; Feng, J.; Ge, Z. Nanostructured n-type polycrystalline SnSe materials for thermoelectric applications. ACS. Appl. Nano. Mater. 2023, 6, 11754-63.

250. Choi, M.; An, J.; Lee, H.; et al. High figure-of-merit for ZnO nanostructures by interfacing lowly-oxidized graphene quantum dots. Nat. Commun. 2024, 15, 1996.

251. Sulaiman, S.; Izman, S.; Uday, M. B.; Omar, M. F. Review on grain size effects on thermal conductivity in ZnO thermoelectric materials. RSC. Adv. 2022, 12, 5428-38.

252. Jood, P.; Mehta, R. J.; Zhang, Y.; et al. Heavy element doping for enhancing thermoelectric properties of nanostructured zinc oxide. RSC. Adv. 2014, 4, 6363.

253. Park, N. W.; Lee, W. Y.; Yoon, Y. S.; et al. Direct probing of cross-plane thermal properties of atomic layer deposition Al2O3/ZnO superlattice films with an improved figure of merit and their cross-plane thermoelectric generating performance. ACS. Appl. Mater. Interfaces. 2018, 10, 44472-82.

254. Lee, J.; Park, T.; Lee, S.; et al. Enhancing the thermoelectric properties of super-lattice Al2O3/ZnO atomic film via interface confinement. Ceram. Int. 2016, 42, 14411-5.

255. Zhang, X.; Zhang, Y.; Wu, L.; et al. Ba1/3CoO2: a thermoelectric oxide showing a reliable ZT of ~0.55 at 600 °C in air. ACS. Appl. Mater. Interfaces. 2022, 14, 33355-60.

256. Shi, X.; Wu, H.; Liu, Q.; et al. SrTiO3-based thermoelectrics: progress and challenges. Nano. Energy. 2020, 78, 105195.

257. Zhou, Z.; Huang, Y.; Wei, B.; et al. Compositing effects for high thermoelectric performance of Cu2Se-based materials. Nat. Commun. 2023, 14, 2410.

258. Fan, Z.; Liang, J.; Chen, J. L.; et al. Realizing high thermoelectric performance for p-type SiGe in medium temperature region via TaC compositing. J. Mater. 2023, 9, 984-91.

259. Basu, R.; Singh, A. High temperature Si-Ge alloy towards thermoelectric applications: a comprehensive review. Mater. Today. Phys. 2021, 21, 100468.

260. Lee, E. K.; Yin, L.; Lee, Y.; et al. Large thermoelectric figure-of-merits from SiGe nanowires by simultaneously measuring electrical and thermal transport properties. Nano. Lett. 2012, 12, 2918-23.

261. Ahmad, A.; Zhu, B.; Wang, Z.; et al. Largely enhanced thermoelectric performance in p-type Bi2Te3-based materials through entropy engineering. Energy. Environ. Sci. 2024, 17, 695-703.

262. Rogl, G.; Ghosh, S.; Renk, O.; et al. Influence of shear strain on HPT-processed n-type skutterudites yielding ZT=2.1. J. Alloys. Compd. 2021, 855, 157409.

263. Wang, S.; Salvador, J. R.; Yang, J.; Wei, P.; Duan, B.; Yang, J. High-performance n-type YbxCo4Sb12: from partially filled skutterudites towards composite thermoelectrics. NPG. Asia. Mater. 2016, 8, e285.

264. Gao, P.; Berkun, I.; Schmidt, R. D.; et al. Transport and mechanical properties of high-ZT Mg2.08Si0.4-xSn0.6Sbx thermoelectric materials. J. Electron. Mater. 2014, 43, 1790-803.

265. Grebenkemper, J. H.; Hu, Y.; Barrett, D.; et al. High temperature thermoelectric properties of Yb14MnSb11 prepared from reaction of MnSb with the elements. Chem. Mater. 2015, 27, 5791-8.

266. Justl, A. P.; Cerretti, G.; Bux, S. K.; Kauzlarich, S. M. Hydride assisted synthesis of the high temperature thermoelectric phase: Yb14MgSb11. J. Appl. Phys. 2019, 126, 165106.

267. Li, M.; Islam, S. M. K. N.; Yahyaoglu, M.; et al. Ultrahigh figure-of-merit of Cu2Se incorporated with carbon coated boron nanoparticles. InfoMat 2019, 1, 108-15.

268. Ma, J. M.; Clarke, S. M.; Zeier, W. G.; et al. Mechanochemical synthesis and high temperature thermoelectric properties of calcium-doped lanthanum telluride La3-xCaxTe4. J. Mater. Chem. C. Mater. 2015, 3, 10459-66.

269. Wang, J.; Zhang, B.; Kang, H.; et al. Record high thermoelectric performance in bulk SrTiO3 via nano-scale modulation doping. Nano. Energy. 2017, 35, 387-95.

270. Wu, H.; Shi, X.; Duan, J.; Liu, Q.; Chen, Z. Advances in Ag2Se-based thermoelectrics from materials to applications. Energy. Environ. Sci. 2023, 16, 1870-906.

271. Wang, Y.; Qin, B.; Zhao, L. Strategies to enhance polycrystal SnSe thermoelectrics: structure control offers a novel direction. J. Appl. Phys. 2023, 134, 030901.

272. Han, L.; Spangsdorf, S. H.; Nong, N. V.; et al. Effects of spark plasma sintering conditions on the anisotropic thermoelectric properties of bismuth antimony telluride. RSC. Adv. 2016, 6, 59565-73.

273. Jacquot, A.; Rull, M.; Moure, A.; et al. Anisotropy and inhomogeneity measurement of the transport properties of spark plasma sintered thermoelectric materials. MRS. Proc. 2013, 1490, 89-95.

274. Shi, X.; Sun, S.; Wu, T.; et al. Weavable thermoelectrics: advances, controversies, and future developments. Mater. Futur. 2024, 3, 012103.

275. Dharmaiah, P.; Jung, S.; Kim, J.; Kim, S. K.; Baek, S. Why is it challenging to improve the thermoelectric properties of n-type Bi2Te3 alloys? Appl. Phys. Rev. 2024, 11, 031312.

276. Zhang, Q.; Pan, Q.; Wang, M.; et al. Commercially scalable (Bi,Sb)2Te3 thermoelectrics via interfacial defects evolution for advanced power generators. Acta. Mater. 2025, 292, 121064.

277. Gupta, S.; Batra, Y. Advancements in Ge-based thermoelectric materials for efficient waste heat energy conversion: a comprehensive review. Phys. Scr. 2025, 100, 012004.

278. Le, W.; Yang, W.; Sheng, W.; Shuai, J. Research progress of interfacial design between thermoelectric materials and electrode materials. ACS. Appl. Mater. Interfaces. 2023, 15, 12611-21.

279. Yang, L.; Chen, Z.; Dargusch, M. S.; Zou, J. High performance thermoelectric materials: progress and their applications. Adv. Energy. Mater. 2018, 8, 1701797.

280. Guo, M.; Zhang, A.; Wu, C.; Fan, W.; Zhang, Q.; Chen, S. Reducing the interfacial diffusion driving force to achieve diffusion-resistant bonding in Mg3Sb1.5Bi0.5-based thermoelectric devices. ACS. Appl. Energy. Mater. 2025, 8, 3837-45.

281. Hsieh, H.; Wang, C.; Lan, T.; et al. Joint properties enhancement for PbTe thermoelectric materials by addition of diffusion barrier. Mater. Chem. Phy. 2020, 246, 122848.

282. Qin, D.; Zhu, W.; Hai, F.; Wang, C.; Cui, J.; Deng, Y. Enhanced interface stability of multilayer Bi2Te3/Ti/Cu films after heat treatment via the insertion of a Ti layer. Adv. Mater. Inter. 2019, 6, 1900682.

283. Weidenkaff, A.; Cahen, D.; Cifarelli, L.; et al. Thermoelectricity for future sustainable energy technologies. EPJ. Web. Conf. 2017, 148, 00010.

284. Nishikawa, H.; Liu, X.; Wang, X.; Fujita, A.; Kamada, N.; Saito, M. Microscale Ag particle paste for sintered joints in high-power devices. Mater. Lett. 2015, 161, 231-3.

285. Cheng, J.; Xue, W.; Zhang, T.; et al. A universal approach to high-performance thermoelectric module design for power generation. Joule 2025, 9, 101818.

286. Shiran Chaharsoughi, M.; Zhao, D.; Crispin, X.; Fabiano, S.; Jonsson, M. P. Thermodiffusion-assisted pyroelectrics-enabling rapid and stable heat and radiation sensing. Adv. Funct. Mater. 2019, 29, 1900572.

287. Hou, S.; Huang, J.; Liu, Y.; et al. Encapsulated Ag2Se-based flexible thermoelectric generator with remarkable performance. Mater. Today. Phys. 2023, 38, 101276.

288. Zhang, J.; Jørgensen, L. R.; Song, L.; Iversen, B. B. Insight into the strategies for improving the thermal stability of efficient N-type Mg3Sb2-based thermoelectric materials. ACS. Appl. Mater. Interfaces. 2022, 14, 31024-34.

289. Boldrini, S.; Ferrario, A.; Fasolin, S.; Miozzo, A.; Barison, S. Ultrafast high-temperature sintering and thermoelectric properties of n-doped Mg2Si. Nanotechnology 2023, 34, 155601.

290. Gustinvil, R.; Wright, W. J.; Di, Benedetto., G. L.; et al. Enhancing conversion efficiency of direct ink write printed copper (I) sulfide thermoelectrics via sulfur infusion process. Machines 2023, 11, 881.

291. Macleod, B. A.; Stanton, N. J.; Gould, I. E.; et al. Large n- and p-type thermoelectric power factors from doped semiconducting single-walled carbon nanotube thin films. Energy. Environ. Sci. 2017, 10, 2168-79.

292. Cheng, K.; Kung, C.; Huang, J.; et al. Preventing degradation of thermoelectric property after aging for Bi2Te3 thin film module. Mater. Chem. Phys. 2024, 318, 129208.

293. Gorskyi, P. Typical mechanisms of degradation of thermoelectric materials and ways to reduce their impact on the reliability of thermoelectric modules. Phys. Chem. Solid. State. 2022, 23, 505-16.

294. Ferreres, X. R.; Gazder, A.; Manettas, A.; Aminorroaya, Yamini., S. Solid-state bonding of bulk PbTe to nickel electrode for thermoelectric modules. ACS. Appl. Energy. Mater. 2018, 1, 348-54.

295. Narducci, D.; Lorenzi, B. Economic convenience of hybrid thermoelectric-photovoltaic solar harvesters. ACS. Appl. Energy. Mater. 2021, 4, 4029-37.

296. Caballero-Calero, O.; Cervino-solana, P.; Cloetens, P.; Monaco, F.; Martin-Gonzalez, M. Flexible polyester-embedded thermoelectric device with Bi2Te3 and Te legs for wearable power generation. Appl. Mater. Today. 2024, 41, 102458.

297. Lee, B.; Cho, H.; Park, K. T.; et al. High-performance compliant thermoelectric generators with magnetically self-assembled soft heat conductors for self-powered wearable electronics. Nat. Commun. 2020, 11, 5948.

298. Martinez, A.; Astrain, D.; Aranguren, P. Thermoelectric self-cooling for power electronics: increasing the cooling power. Energy 2016, 112, 1-7.

299. Roccaforte, F.; Fiorenza, P.; Greco, G.; et al. Emerging trends in wide band gap semiconductors (SiC and GaN) technology for power devices. Microelectron. Eng. 2018, 187-8, 66-77.

300. Mamur, H.; Üstüner, M. A.; Bhuiyan, M. R. A. Future perspective and current situation of maximum power point tracking methods in thermoelectric generators. Sustain. Energy. Technol. Assessments. 2022, 50, 101824.

301. Cai, Y.; Ding, N.; Rezania, A.; Deng, F.; Rosendahl, L.; Chen, J. A multi-objective optimization in system level for thermoelectric generation system. Energy 2023, 281, 128194.

302. Su, Y.; Ding, Y.; Xiao, L.; et al. An ultra-deep TSV technique enabled by the dual catalysis-based electroless plating of combined barrier and seed layers. Microsyst. Nanoeng. 2024, 10, 76.

303. Hao, F.; Qiu, P.; Tang, Y.; et al. High efficiency Bi2Te3-based materials and devices for thermoelectric power generation between 100 and 300 °C. Energy. Environ. Sci. 2016, 9, 3120-7.

304. Deng, T.; Gao, Z.; Li, Z.; et al. Room-temperature exceptional plasticity in defective Bi2Te3-based bulk thermoelectric crystals. Science 2024, 386, 1112-7.

305. Nozariasbmarz, A.; Poudel, B.; Li, W.; Kang, H. B.; Zhu, H.; Priya, S. Bismuth telluride thermoelectrics with 8% module efficiency for waste heat recovery application. iScience 2020, 23, 101340.

306. Mason, L. S. Realistic specific power expectations for advanced radioisotope power systems. J. Propuls. Power. 2007, 23, 1075-9.

307. Sauerschnig, P.; Jood, P.; Ohta, M. Challenges and progress in contact development for PbTe-based thermoelectrics. ChemNanoMat 2023, 9, e202200560.

308. Bu, Z.; Zhang, X.; Hu, Y.; et al. An over 10% module efficiency obtained using non-Bi2Te3 thermoelectric materials for recovering heat of < 600 K. Energy. Environ. Sci. 2021, 14, 6506-13.

309. Zhu, Q.; Song, S.; Zhu, H.; Ren, Z. Realizing high conversion efficiency of Mg3Sb2-based thermoelectric materials. J. Power. Sources. 2019, 414, 393-400.

310. Bu, Z.; Zhang, X.; Shan, B.; et al. Realizing a 14% single-leg thermoelectric efficiency in GeTe alloys. Sci. Adv. 2021, 7, eabf2738.

311. Jiang, B.; Wang, W.; Liu, S.; et al. High figure-of-merit and power generation in high-entropy GeTe-based thermoelectrics. Science 2022, 377, 208-13.

312. Xie, L.; Ming, C.; Song, Q.; et al. Lead-free and scalable GeTe-based thermoelectric module with an efficiency of 12%. Sci. Adv. 2023, 9, eadg7919.

313. Liu, Z.; Sato, N.; Gao, W.; et al. Demonstration of ultrahigh thermoelectric efficiency of ~7.3% in Mg3Sb2/MgAgSb module for low-temperature energy harvesting. Joule 2021, 5, 1196-208.

314. Zhang, J.; Song, L.; Iversen, B. B. Insights into the design of thermoelectric Mg3Sb2 and its analogs by combining theory and experiment. NPJ. Comput. Mater. 2019, 5, 215.

315. Jood, P.; Ohta, M.; Yamamoto, A.; Kanatzidis, M. G. Excessively doped PbTe with Ge-induced nanostructures enables high-efficiency thermoelectric modules. Joule 2018, 2, 1339-55.

316. Yu, J.; Xing, Y.; Hu, C.; et al. Half-heusler thermoelectric module with high conversion efficiency and high power density. Adv. Energy. Mater. 2020, 10, 2000888.

317. Yu, J.; Fu, C.; Liu, Y.; et al. Unique role of refractory Ta alloying in enhancing the figure of merit of NbFeSb thermoelectric materials. Adv. Energy. Mater. 2018, 8, 1701313.

318. Li, W.; Poudel, B.; Kishore, R. A.; et al. Toward high conversion efficiency of thermoelectric modules through synergistical optimization of layered materials. Adv. Mater. 2023, 35, e2210407.

319. Nozariasbmarz, A.; Saparamadu, U.; Li, W.; et al. High-performance half-Heusler thermoelectric devices through direct bonding technique. J. Power. Sources. 2021, 493, 229695.

320. Mejri, M.; Romanjek, K.; Mouko, H. I.; et al. Reliability investigation of silicide-based thermoelectric modules. ACS. Appl. Mater. Interfaces. 2024, 16, 8006-15.

321. Big-alabo, A. Performance evaluation of Ge/SiGe-based thermoelectric generator. Phys. E. 2019, 108, 202-5.

322. Xia, G. M. Interdiffusion in group IV semiconductor material systems: applications, research methods and discoveries. Sci. Bull. 2019, 64, 1436-55.

323. Schock, A.; Sankarankandath, V.; Shirbacheh, M. Requirements and designs for mars rover RTGs. In Proceedings of the 24th Intersociety Energy Conversion Engineering Conference; 1989, pp. 2681-91.

324. Geffroy, C.; Lilley, D.; Parez, P. S.; Prasher, R. Techno-economic analysis of waste-heat conversion. Joule 2021, 5, 3080-96.

325. Leblanc, S.; Yee, S. K.; Scullin, M. L.; Dames, C.; Goodson, K. E. Material and manufacturing cost considerations for thermoelectrics. Renew. Sustain. Energy. Rev. 2014, 32, 313-27.

326. Thermoelectric materials, devices and systems: technology assessment. 2015. Available from: https://www.energy.gov/sites/prod/files/2015/02/f19/QTR%20Ch8%20-%20Thermoelectic%20Materials%20TA%20Feb-13-2015.pdf [Last accessed on 5 Jun 2025].

327. Zante, G.; Daskalopoulou, E.; Elgar, C. E.; et al. Targeted recovery of metals from thermoelectric generators (TEGs) using chloride brines and ultrasound. RSC. Sustain. 2023, 1, 1025-34.

328. Halli, P.; Wilson, B. P.; Hailemariam, T.; Latostenmaa, P.; Yliniemi, K.; Lundström, M. Electrochemical recovery of tellurium from metallurgical industrial waste. J. Appl. Electrochem. 2020, 50, 1-14.

Energy Materials
ISSN 2770-5900 (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/