REFERENCES

1. Winter, M.; Brodd, R. J. What are batteries, fuel cells, and supercapacitors? Chem. Rev. 2004, 104, 4245-69.

2. Whittingham, M. S. Lithium batteries and cathode materials. Chem. Rev. 2004, 104, 4271-301.

3. Cano, Z. P.; Banham, D.; Ye, S.; et al. Batteries and fuel cells for emerging electric vehicle markets. Nat. Energy. 2018, 3, 279-89.

4. Choi, N. S.; Chen, Z.; Freunberger, S. A.; et al. Challenges facing lithium batteries and electrical double-layer capacitors. Angew. Chem. Int. Ed. 2012, 51, 9994-10024.

5. Goodenough, J. B. Electrochemical energy storage in a sustainable modern society. Energy. Environ. Sci. 2014, 7, 14-8.

6. Manthiram, A.; Chung, S. H.; Zu, C. Lithium-sulfur batteries: progress and prospects. Adv. Mater. 2015, 27, 1980-2006.

7. Cho, B. K.; Jung, S. Y.; Park, S. J.; Hyun, J. H.; Yu, S. H. In Situ/Operando imaging techniques for next-generation battery analysis. ACS. Energy. Lett. 2024, 9, 4068-92.

8. Kim, J. H.; Kim, M.; Kim, S. J.; et al. Understanding the electrochemical processes of SeS2 positive electrodes for developing high-performance non-aqueous lithium sulfur batteries. Nat. Commun. 2024, 15, 7669.

9. Wujcik, K. H.; Wang, D. R.; Raghunathan, A.; et al. Lithium polysulfide radical anions in ether-based solvents. J. Phys. Chem. C. 2016, 120, 18403-10.

10. Zhang, J.; Fu, Q.; Li, P.; et al. Lithium polysulfide solvation and speciation in the aprotic lithium-sulfur batteries. Particuology 2024, 89, 238-45.

11. Chen, X.; Hou, T.; Persson, K. A.; Zhang, Q. Combining theory and experiment in lithium-sulfur batteries: Current progress and future perspectives. Mater. Today. 2019, 22, 142-58.

12. Kim, M.; Choi, H.; Yu, S. Recent progress in design strategies for high-performance metal-tellurium batteries. Chem. Eng. J. 2025, 504, 158528.

13. Qiu, Y.; Zuo, X.; Fu, L.; Liu, D.; Zhang, Y. Design and optimization of multicomponent electrolytes for lithium-sulfur battery: a machine learning concept and outlook. ChemCatChem 2024, 16, e202400754.

14. Zheng, J.; Fan, X.; Ji, G.; et al. Manipulating electrolyte and solid electrolyte interphase to enable safe and efficient Li-S batteries. Nano. Energy. 2018, 50, 431-40.

15. Li, J.; Gao, L.; Pan, F.; et al. Engineering strategies for suppressing the shuttle effect in lithium-sulfur batteries. Nanomicro. Lett. 2023, 16, 12.

16. He, X.; Bresser, D.; Passerini, S.; et al. The passivity of lithium electrodes in liquid electrolytes for secondary batteries. Nat. Rev. Mater. 2021, 6, 1036-52.

17. Deng, Z.; Jia, Y.; Deng, Y.; et al. Coordination structure regulation in non-flammable electrolyte enabling high voltage lithium electrochemistry. J. Energy. Chem. 2024, 96, 282-90.

18. Kong, L.; Yin, L.; Xu, F.; et al. Electrolyte solvation chemistry for lithium-sulfur batteries with electrolyte-lean conditions. J. Energy. Chem. 2021, 55, 80-91.

19. Shen, C.; Xie, J.; Zhang, M.; et al. Self-discharge behavior of lithium-sulfur batteries at different electrolyte/sulfur ratios. J. Electrochem. Soc. 2019, 166, A5287-94.

20. Ye, H.; Li, Y. Towards practical lean-electrolyte Li-S batteries: highly solvating electrolytes or sparingly solvating electrolytes? Nano. Res. Energy. 2022, 1, e9120012.

21. Chen, J.; Fu, Y.; Guo, J. Development of electrolytes under lean condition in lithium-sulfur batteries. Adv. Mater. 2024, 36, e2401263.

22. Gupta, A.; Bhargav, A.; Jones, J. P.; Bugga, R. V.; Manthiram, A. Influence of lithium polysulfide clustering on the kinetics of electrochemical conversion in lithium-sulfur batteries. Chem. Mater. 2020, 32, 2070-7.

23. Gupta, A.; Bhargav, A.; Manthiram, A. Highly solvating electrolytes for lithium-sulfur batteries. Adv. Energy. Mater. 2019, 9, 1803096.

24. He, M.; Ozoemena, K. I.; Aurbach, D.; Pang, Q. Developing highly solvating electrolyte solutions for lithium-sulfur batteries. Curr. Opin. Electrochem. 2023, 39, 101285.

25. Elabd, A.; Kim, J.; Sethio, D.; et al. Dual functional high donor electrolytes for lithium-sulfur batteries under lithium nitrate free and lean electrolyte conditions. ACS. Energy. Lett. 2022, 7, 2459-68.

26. Cheng, L.; Curtiss, L. A.; Zavadil, K. R.; Gewirth, A. A.; Shao, Y.; Gallagher, K. G. Sparingly solvating electrolytes for high energy density lithium-sulfur batteries. ACS. Energy. Lett. 2016, 1, 503-9.

27. Jiang, R.; Qi, X.; Ji, J.; et al. Accelerated Li2S conversion in sparingly-solvating electrolytes enabled with dipole-dipole interaction for wide-temperature Li-S batteries. Energy. Storage. Mater. 2024, 66, 103215.

28. Choi, J.; Jeong, H.; Jang, J.; et al. Weakly solvating solution enables chemical prelithiation of graphite-SiOx anodes for high-energy Li-ion batteries. J. Am. Chem. Soc. 2021, 143, 9169-76.

29. Gao, X.; Yu, Z.; Wang, J.; et al. Electrolytes with moderate lithium polysulfide solubility for high-performance long-calendar-life lithium-sulfur batteries. Proc. Natl. Acad. Sci. USA. 2023, 120, e2301260120.

30. Zhang, S. S. Liquid electrolyte lithium/sulfur battery: fundamental chemistry, problems, and solutions. J. Power. Sources. 2013, 231, 153-62.

31. Kim, S. C.; Gao, X.; Liao, S. L.; et al. Solvation-property relationship of lithium-sulphur battery electrolytes. Nat. Commun. 2024, 15, 1268.

32. Cheng, H.; Sun, Q.; Li, L.; et al. Emerging era of electrolyte solvation structure and interfacial model in batteries. ACS. Energy. Lett. 2022, 7, 490-513.

33. Nanda, S.; Bhargav, A.; Manthiram, A. Anode-free, lean-electrolyte lithium-sulfur batteries enabled by tellurium-stabilized lithium deposition. Joule 2020, 4, 1121-35.

34. Zhao, J. J.; Chen, Z. X.; Cheng, Q.; et al. Electrocatalysts work better in lean-electrolyte lithium-sulfur batteries. J. Mater. Chem. A. 2024, 12, 21845-52.

35. Hall, D. S.; Self, J.; Dahn, J. R. Dielectric constants for quantum chemistry and Li-ion batteries: solvent blends of ethylene carbonate and ethyl methyl carbonate. J. Phys. Chem. C. 2015, 119, 22322-30.

36. Zhang, G.; Peng, H. J.; Zhao, C. Z.; et al. The radical pathway based on a lithium-metal-compatible high-dielectric electrolyte for lithium-sulfur batteries. Angew. Chem. Int. Ed. 2018, 57, 16732-6.

37. Cuisinier, M.; Hart, C.; Balasubramanian, M.; Garsuch, A.; Nazar, L. F. Radical or not radical: revisiting lithium-sulfur electrochemistry in nonaqueous electrolytes. Adv. Energy. Mater. 2015, 5, 1401801.

38. Gutmann, V. Empirical parameters for donor and acceptor properties of solvents. Electrochim. Acta. 1976, 21, 661-70.

39. Zhou, P.; Xiang, Y.; Liu, K. Understanding and applying the donor number of electrolytes in lithium metal batteries. Energy. Environ. Sci. 2024, 17, 8057-77.

40. Baek, M.; Shin, H.; Char, K.; Choi, J. W. New high donor electrolyte for lithium-sulfur batteries. Adv. Mater. 2020, 32, e2005022.

41. Shen, Z.; Gao, Q.; Zhu, X.; et al. In-situ free radical supplement strategy for improving the redox kinetics of Li-S batteries. Energy. Storage. Mater. 2023, 57, 299-307.

42. Meng, R.; He, X.; Ong, S. J. H.; et al. A radical pathway and stabilized Li anode enabled by halide quaternary ammonium electrolyte additives for lithium-sulfur batteries. Angew. Chem. Int. Ed. 2023, 62, e202309046.

43. Shi, Z.; Thomas, S.; Tian, Z.; et al. A tailored highly solvating electrolyte toward ultra lean-electrolyte Li-S batteries. Nano. Res. Energy. 2024, 3, e9120126.

44. Zhong, N.; Lei, C.; Meng, R.; Li, J.; He, X.; Liang, X. Electrolyte solvation chemistry for the solution of high-donor-number solvent for stable Li-S batteries. Small 2022, 18, e2200046.

45. Cui, Y.; Fang, W.; Zhang, J.; et al. Controllable sulfur redox multi-pathway reactions regulated by metal-free electrocatalysts anchored with LiS3* radicals. Nano. Energy. 2024, 122, 109343.

46. Li, Z.; Zhou, Y.; Wang, Y.; Lu, Y. Solvent-mediated Li2S electrodeposition: a critical manipulator in lithium-sulfur batteries. Adv. Energy. Mater. 2019, 9, 1802207.

47. Zhou, S.; Shi, J.; Liu, S.; et al. Visualizing interfacial collective reaction behaviour of Li-S batteries. Nature 2023, 621, 75-81.

48. Li, X.; Zhao, R.; Fu, Y.; Manthiram, A. Nitrate additives for lithium batteries: mechanisms, applications, and prospects. eScience 2021, 1, 108-23.

49. Zhang, X. Q.; Chen, X.; Cheng, X. B.; et al. Highly stable lithium metal batteries enabled by regulating the solvation of lithium ions in nonaqueous electrolytes. Angew. Chem. Int. Ed. 2018, 57, 5301-5.

50. Um, J. H.; Yu, S. H. Unraveling the mechanisms of lithium metal plating/stripping via in situ/operando analytical techniques. Adv. Energy. Mater. 2021, 11, 2003004.

51. Pan, H.; Han, K. S.; Vijayakumar, M.; et al. Ammonium additives to dissolve lithium sulfide through hydrogen binding for high-energy lithium-sulfur batteries. ACS. Appl. Mater. Interfaces. 2017, 9, 4290-5.

52. Qi, X.; Yang, F.; Sang, P.; et al. Electrochemical reactivation of dead Li2S for Li-S batteries in non-solvating electrolytes. Angew. Chem. Int. Ed. 2023, 62, e202218803.

53. Yanagi, M.; Ueno, K.; Ando, A.; et al. Effects of polysulfide solubility and Li ion transport on performance of Li-S batteries using sparingly solvating electrolytes. J. Electrochem. Soc. 2020, 167, 070531.

54. Robles-Fernández, A.; Moreno-Fernández, G.; Soria-Fernández, A.; Castillo, J.; Santiago, A.; Carriazo, D. Towards practical Li-S batteries through the combination of a nanostructured graphene composite cathode and a novel sparingly solvating electrolyte. Carbon 2024, 229, 119442.

55. Liu, Y.; Xu, L.; Yu, Y.; et al. Stabilized Li-S batteries with anti-solvent-tamed quasi-solid-state reaction. Joule 2023, 7, 2074-91.

56. Liu, J.; Ghosh, A.; Kondou, S.; et al. Localized high-concentration binary salt electrolytes with suppressed Li2Sx solubility to achieve stable Li-S pouch cells with high sulfur-loading cathodes under lean electrolyte conditions. ACS. Appl. Energy. Mater. 2025, 8, 1570-9.

57. Castillo, J.; Soria-Fernández, A.; Rodriguez-Peña, S.; et al. Graphene-based sulfur cathodes and dual salt-based sparingly solvating electrolytes: a perfect marriage for high performing, safe, and long cycle life lithium-sulfur prototype batteries. Adv. Energy. Mater. 2024, 14, 2302378.

58. Fan, F. Y.; Carter, W. C.; Chiang, Y. M. Mechanism and kinetics of Li2S precipitation in lithium-sulfur batteries. Adv. Mater. 2015, 27, 5203-9.

59. Nakanishi, A.; Ueno, K.; Watanabe, D.; et al. Sulfolane-based highly concentrated electrolytes of lithium bis(trifluoromethanesulfonyl)amide: ionic transport, Li-ion coordination, and Li-S battery performance. J. Phys. Chem. C. 2019, 123, 14229-38.

60. Pang, Q.; Shyamsunder, A.; Narayanan, B.; Kwok, C. Y.; Curtiss, L. A.; Nazar, L. F. Tuning the electrolyte network structure to invoke quasi-solid state sulfur conversion and suppress lithium dendrite formation in Li-S batteries. Nat. Energy. 2018, 3, 783-91.

61. Hou, L. P.; Zhang, X. Q.; Yao, N.; et al. An encapsulating lithium-polysulfide electrolyte for practical lithium-sulfur batteries. Chem 2022, 8, 1083-98.

62. Kim, I.; Kim, S.; Cho, H.; et al. Moderately solvating electrolyte with fluorinated cosolvents for lean-electrolyte Li-S batteries. Adv. Energy. Mater. 2025, 15, 2403828.

63. Li, X. Y.; Feng, S.; Song, Y. W.; et al. Kinetic evaluation on lithium polysulfide in weakly solvating electrolyte toward practical lithium-sulfur batteries. J. Am. Chem. Soc. 2024, 146, 14754-64.

64. Pham, T. D.; Bin, Faheem., A.; Kim, J.; Ma, S. H.; Kwak, K.; Lee, K. K. High-efficiency lithium metal stabilization and polysulfide suppression in Li-S battery enabled by weakly solvating solvent. Small 2024, 20, e2307951.

65. Gao, X.; Zhou, Y. N.; Han, D.; et al. Thermodynamic understanding of Li-dendrite formation. Joule 2020, 4, 1864-79.

66. Zhao, Y.; Zhou, T.; Ashirov, T.; et al. Fluorinated ether electrolyte with controlled solvation structure for high voltage lithium metal batteries. Nat. Commun. 2022, 13, 2575.

67. He, J.; Li, X. Recent materials development for Li-ion and Li-S battery separators. J. Energy. Storage. 2025, 112, 115541.

68. Li, Z.; Wang, J.; Yuan, H.; Yu, Y.; Tan, Y. Recent progress and challenge in metal-organic frameworks for lithium-sulfur battery separators. Adv. Funct. Mater. 2024, 34, 2405890.

69. Chen, R.; Zhou, Y.; Li, X. Nanocarbon-enabled mitigation of sulfur expansion in lithium-sulfur batteries. Energy. Storage. Mater. 2024, 68, 103353.

70. Chen, X. R.; Yu, X. F.; He, B.; Li, W. C. Encapsulation of sulfur inside micro-nano carbon/molybdenum carbide by in-situ chemical transformation for high-performance Li-S batteries. New. Carbon. Mater. 2023, 38, 337-44.

71. Kong, X.; Kong, Y.; Zheng, Y.; He, L.; Wang, D.; Zhao, Y. Hydrofluoroether diluted dual-salts-based electrolytes for lithium-sulfur batteries with enhanced lithium anode protection. Small 2022, 18, e2205017.

72. Zheng, J.; Ji, G.; Fan, X.; et al. High-fluorinated electrolytes for Li-S batteries. Adv. Energy. Mater. 2019, 9, 1803774.

73. Wang, J.; Lin, F.; Jia, H.; Yang, J.; Monroe, C. W.; NuLi, Y. Towards a safe lithium-sulfur battery with a flame-inhibiting electrolyte and a sulfur-based composite cathode. Angew. Chem. Int. Ed. 2014, 53, 10099-104.

74. Chen, S.; Zheng, J.; Yu, L.; et al. High-efficiency lithium metal batteries with fire-retardant electrolytes. Joule 2018, 2, 1548-58.

75. Zheng, B.; He, Z.; Lei, X.; Zhang, J. Microscopic insights into effects of sulfolane additive on Li-S battery electrolyte. J. Mol. Liq. 2024, 413, 126000.

76. Zhao, Y.; Zhou, T.; Mensi, M.; Choi, J. W.; Coskun, A. Electrolyte engineering via ether solvent fluorination for developing stable non-aqueous lithium metal batteries. Nat. Commun. 2023, 14, 299.

77. Zhao, M.; Li, B. Q.; Zhang, X. Q.; Huang, J. Q.; Zhang, Q. A perspective toward practical lithium-sulfur batteries. ACS. Cent. Sci. 2020, 6, 1095-104.

78. Song, X.; Liang, X.; Kim, H.; Sun, Y. Practical lithium-sulfur batteries: beyond the conventional electrolyte concentration. ACS. Energy. Lett. 2024, 9, 5576-86.

79. Agostini, M.; Lim, D. H.; Sadd, M.; et al. Rational design of low cost and high energy lithium batteries through tailored fluorine-free electrolyte and nanostructured S/C composite. ChemSusChem 2018, 11, 2981-6.

80. Kong, X.; Zheng, Y.; He, L.; Wang, D.; Zhao, Y. Butyl ether as Co-diluent in medium-concentrated electrolyte for Li-S battery. J. Energy. Chem. 2023, 85, 343-7.

81. Niu, B.; Xu, Z.; Xiao, J.; Qin, Y. Recycling hazardous and valuable electrolyte in spent lithium-ion batteries: urgency, progress, challenge, and viable approach. Chem. Rev. 2023, 123, 8718-35.

82. Yu, B. C.; Jung, J. W.; Park, K.; Goodenough, J. B. A new approach for recycling waste rubber products in Li-S batteries. Energy. Environ. Sci. 2017, 10, 86-90.

83. Yao, L. Y.; Hou, L. P.; Song, Y. W.; et al. Recycling inactive lithium in lithium-sulfur batteries using organic polysulfide redox. J. Mater. Chem. A. 2023, 11, 7441-6.

Energy Materials
ISSN 2770-5900 (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/