REFERENCES

1. Winter, M.; Barnett, B.; Xu, K. Before Li ion batteries. Chem. Rev. 2018, 118, 11433-56.

2. Goodenough, J. B.; Park, K. S. The Li-ion rechargeable battery: a perspective. J. Am. Chem. Soc. 2013, 135, 1167-76.

3. Zhang, B.; Wang, X.; Wang, S.; et al. High-energy-density lithium manganese iron phosphate for lithium-ion batteries: progresses, challenges, and prospects. J. Energy. Chem. 2025, 100, 1-17.

4. Chung, S. Y.; Bloking, J. T.; Chiang, Y. M. Electronically conductive phospho-olivines as lithium storage electrodes. Nat. Mater. 2002, 1, 123-8.

5. Qiu, Z.; Man, Q.; Mu, Y.; et al. Modification strategies for enhancing the performance of lithium manganese iron phosphate cathodes in lithium-ion batteries. Chem. Methods. 2025, 2400065.

6. Nekahi, A.; Kumar, A. M. R.; Li, X.; Deng, S.; Zaghib, K. Sustainable LiFePO4 and LiMnxFe1-xPO4 (x=0.1-1) cathode materials for lithium-ion batteries: a systematic review from mine to chassis. Mater. Sci. Eng. R. 2024, 159, 100797.

7. Yang, L.; Deng, W.; Xu, W.; et al. Olivine LiMnxFe1-xPO4 cathode materials for lithium ion batteries: restricted factors of rate performances. J. Mater. Chem. A. 2021, 9, 14214-32.

8. Shiozaki, M.; Yamashita, H.; Hirayama, Y.; Ogami, T.; Kanamura, K. Blending lithium nickel manganese cobalt oxide with lithium iron manganese phosphate as cathode materials for lithium-ion batteries with enhanced electrochemical performance. Electrochemistry 2023, 91, 077007.

9. Kobayashi, G.; Yamada, A.; Nishimura, S. I.; et al. Shift of redox potential and kinetics in Lix(MnyFe1-y)PO4. J. Power. Sources. 2009, 189, 397-401.

10. Yamada, A.; Kudo, Y.; Liu, K. Y. Phase diagram of Lix(MnyFe1-y)PO4 (0 ≤ x, y ≤ 1). J. Electrochem. Soc. 2001, 148, A1153.

11. Loftager, S.; Schougaard, S. B.; Vegge, T.; García-Lastra, J. M. Density functional theory study of redox potential shifts in LixMnyFe1-yPO4 battery electrodes. J. Phys. Chem. C. 2019, 123, 102-9.

12. Di Lecce, D.; Brescia, R.; Scarpellini, A.; Prato, M.; Hassoun, J. A high voltage olivine cathode for application in lithium-ion batteries. ChemSusChem 2016, 9, 223-30.

13. Sun, Y. K.; Oh, S. M.; Park, H. K.; Scrosati, B. Micrometer-sized, nanoporous, high-volumetric-capacity LiMn0.85Fe0.15PO4 cathode material for rechargeable lithium-ion batteries. Adv. Mater. 2011, 23, 5050-4.

14. Xu, E.; Sun, X.; Lyv, W.; et al. Optimizing the electrochemical performance of olivine LiMnxFe1-xPO4 cathode materials: ongoing progresses and challenges. Ind. Eng. Chem. Res. 2024, 63, 9631-60.

15. Hu, Q.; Wang, L.; Han, G.; et al. Revealing the voltage decay of LiMn0.7Fe0.3PO4 cathodes over cycling. Nano. Energy. 2024, 123, 109422.

16. Li, S.; Zhang, H.; Liu, Y.; Wang, L.; He, X. Comprehensive understanding of structure transition in LiMnyFe1-yPO4 during delithiation/lithiation. Adv. Funct. Mater. 2024, 34, 2310057.

17. Ravnsbæk, D. B.; Xiang, K.; Xing, W.; et al. Engineering the transformation strain in LiMnyFe1-yPO4 olivines for ultrahigh rate battery cathodes. Nano. Lett. 2016, 16, 2375-80.

18. Zhang, Y.; Gao, Z.; Su, Z. A novel strategy for preparing nano-sized and high-performance LiMnxFe1-xPO4 cathode materials from discarded LiMn2O4 and LiFePO4. Energy. Technol. 2024, 12, 2301277.

19. Jiang, X.; Li, L.; Wang, X.; Luo, Z. Concentration-gradient structural LiFe0.5Mn0.5PO4/C prepared via co-precipitation reaction for advanced lithium-ion batteries. Chemphyschem 2024, 25, e202300930.

20. Xie, L.; Cui, J.; Ma, Y.; et al. Microsphere LiMn0.6Fe0.4PO4/C cathode with unique rod-like secondary architecture for high energy lithium ion batteries. Chem. Eng. J. 2024, 499, 156513.

21. Sun, K.; Luo, S. H.; Wang, G.; et al. Fine structure and electrochemical performance investigations of spherical LiMn0.6Fe0.4PO4/C cathode material synthesized via a spray-drying route at various calcination temperatures. Langmuir 2024, 40, 16571-81.

22. Yao, M.; Wang, Y. T.; Chen, J. A.; et al. Mn-rich induced alteration on band gap and cycling stability properties of LiMnxFe1-xPO4 cathode materials. ACS. Appl. Mater. Interfaces. 2024, 16, 66077-88.

23. Zoller, F.; Böhm, D.; Luxa, J.; et al. Freestanding LiFe0.2Mn0.8PO4/rGO nanocomposites as high energy density fast charging cathodes for lithium-ion batteries. Mater. Today. Energy. 2020, 16, 100416.

24. Hu, Q.; Liao, J.; Xiao, X.; et al. Ultrahigh rate capability of manganese based olivine cathodes enabled by interfacial electron transport enhancement. Nano. Energy. 2022, 104, 107895.

25. Zhang, B.; Meng, W.; Gong, Y.; et al. [001]-oriented LiMn0.6Fe0.4PO4/C nanorod microspheres contributing high-rate performance to olivine-structured cathode for lithium-ion battery. Mater. Today. Energy. 2022, 30, 101162.

26. Peng, L.; Zhang, X.; Fang, Z.; et al. General facet-controlled synthesis of single-crystalline {010}-oriented LiMPO4 (M = Mn, Fe, Co) nanosheets. Chem. Mater. 2017, 29, 10526-33.

27. Hwang, W.; Kim, J.; Kim, S.; et al. Unveiling olivine cathodes for high energy-density lithium-ion batteries: a comprehensive review from the atomic level to the electrode scale. J. Mater. Chem. A. 2024, 12, 27800-24.

28. Deng, Y.; Yang, C.; Zou, K.; Qin, X.; Zhao, Z.; Chen, G. Recent advances of Mn-rich LiFe1-yMnyPO4 (0.5 ≤ y < 1.0) cathode materials for high energy density lithium ion batteries. Adv. Energy. Mater. 2017, 7, 1601958.

29. Sun, K.; Luo, S. H.; Du, N.; Wei, Y.; Yan, S. Research progress of lithium manganese iron phosphate cathode materials: from preparation to modification. Electroanalysis 2024, 36, e202400120.

30. Balogun, M. S.; Qiu, W.; Luo, Y.; et al. A review of the development of full cell lithium-ion batteries: the impact of nanostructured anode materials. Nano. Res. 2016, 9, 2823-51.

31. Martha, S. K.; Grinblat, J.; Haik, O.; et al. LiMn0.8Fe0.2PO4: an advanced cathode material for rechargeable lithium batteries. Angew. Chem. Int. Ed. 2009, 48, 8559-63.

32. Guéguen, A.; Castro, L.; Dedryvère, R.; et al. The electrode/electrolyte reactivity of LiFe0.33Mn0.67PO4 compared to LiFePO4. J. Electrochem. Soc. 2013, 160, A387-93.

33. Starke, B.; Seidlmayer, S.; Schulz, M.; et al. Gas evolution and capacity fading in LiFexMn1-xPO4/graphite cells studied by neutron imaging and neutron induced prompt gamma activation analysis. J. Electrochem. Soc. 2017, 164, A3943-8.

34. Oh, S. M.; Myung, S. T.; Park, J. B.; Scrosati, B.; Amine, K.; Sun, Y. K. Double-structured LiMn0.85Fe0.15PO4 coordinated with LiFePO4 for rechargeable lithium batteries. Angew. Chem. Int. Ed. 2012, 51, 1853-6.

35. Theivanayagam, M. G.; Hu, T.; Ziebarth, R.; et al. Improvement in hydrophobicity of olivine lithium manganese iron phosphate cathodes by SiF4 treatment for lithium-ion batteries. Solid. State. Ion. 2015, 281, 82-8.

36. Ehteshami, N.; Eguia-Barrio, A.; de Meatza, I.; Porcher, W.; Paillard, E. Adiponitrile-based electrolytes for high voltage, graphite-based Li-ion battery. J. Power. Sources. 2018, 397, 52-8.

37. Lv, Z.; Li, M.; Lin, J.; et al. First-principles study on LiMn0.5Fe0.5PO4 doping to decrease the Jahn-Teller effect. J. Solid. State. Electrochem. 2024, 28, 577-87.

38. Li, Z.; You, Y.; Zhu, Z.; et al. Surface iron concentration gradient: a strategy to suppress Mn3+ Jahn-Teller effect in lithium manganese iron phosphate. Appl. Surf. Sci. 2025, 682, 161689.

39. Zhao, X.; An, L.; Sun, J.; Liang, G. LiNi0.5Co0.2Mn0.3O2-LiMn0.6Fe0.4PO4 mixture with both excellent electrochemical performance and low cost as cathode material for power lithium ion batteries. J. Electrochem. Soc. 2018, 165, A142-8.

40. Lei, P.; Wei, Y.; Xiong, Y.; et al. Capacity degradation prediction model of LiMn0.6Fe0.4PO4/LiNi0.5Co0.2Mn0.3O2 composite cathode materials for lithium-ion batteries. Ionics 2025, 31, 217-28.

41. Xiao, J.; Xiong, Y.; Lei, P.; et al. A dual kalman filtering algorithm for estimating the SOC of lithium-ion batteries with LiMn0.6Fe0.4PO4/LiNi0.5Co0.2Mn0.3O2 cathode based on multi-innovation and schmidt orthogonal transformation. J. Electrochem. Soc. 2023, 170, 090514.

42. Wu, Y.; Ju, J.; Shen, B.; et al. Rich-carbonyl carbon catalysis facilitating the Li2CO3 decomposition for cathode lithium compensation agent. Small 2024, 20, e2311891.

43. Vanaphuti, P.; Manthiram, A. Enhancing the Mn redox kinetics of LiMn0.5Fe0.5PO4 cathodes through a synergistic co-doping with niobium and magnesium for lithium-ion batteries. Small 2024, 20, e2404878.

44. Martha, S. K.; Haik, O.; Borgel, V.; et al. Li4Ti5O12/LiMnPO4 lithium-ion battery systems for load leveling application. J. Electrochem. Soc. 2011, 158, A790.

45. Xu, G.; Han, P.; Dong, S.; Liu, H.; Cui, G.; Chen, L. Li4Ti5O12-based energy conversion and storage systems: status and prospects. Coord. Chem. Rev. 2017, 343, 139-84.

46. Borgel, V.; Gershinsky, G.; Hu, T.; Theivanayagam, M. G.; Aurbach, D. LiMn0.8Fe0.2PO4/Li4Ti5O12, a possible Li-ion battery system for load-leveling application. J. Electrochem. Soc. 2013, 160, A650-7.

47. Jalkanen, K.; Vuorilehto, K. Entropy change characteristics of LiMn0.67Fe0.33PO4 and Li4Ti5O12 electrode materials. J. Power. Sources. 2015, 273, 351-9.

48. Yang, J.; Li, C.; Guang, T.; et al. Zero lithium miscibility gap enables high-rate equimolar Li(Mn,Fe)PO4 solid solution. Nano. Lett. 2021, 21, 5091-7.

49. Zou, Q. Q.; Zhu, G. N.; Xia, Y. Y. Preparation of carbon-coated LiFe0.2Mn0.8PO4 cathode material and its application in a novel battery with Li4Ti5O12 anode. J. Power. Sources. 2012, 206, 222-9.

50. Yang, C. C.; Hwu, H. J.; Lin, S. J.; Chien, W. C.; Shih, J. Y. Preparation of high-rate performance Li4Ti5O12/C anode material in Li4Ti5O12/LiFe0.5Mn0.5PO4 batteries. Electrochim. Acta. 2014, 125, 637-45.

51. Li, J.; Wang, Y.; Wu, J.; Zhao, H.; Liu, H. CNT-embedded LiMn0.8Fe0.2PO4/C microsphere cathode with high rate capability and cycling stability for lithium ion batteries. J. Alloys. Compd. 2018, 731, 864-72.

52. Yu, M.; Li, J.; Ning, X. Improving electrochemical performance of LiMn0.5Fe0.5PO4 cathode by hybrid coating of Li3VO4 and carbon. Electrochim. Acta. 2021, 368, 137597.

53. Daigle, J. C.; Rochon, S.; Asakawa, Y.; et al. High performance LiMnFePO4/Li4Ti5O12 full cells by functionalized polymeric additives. Mater. Adv. 2021, 2, 253-60.

54. Yang, C. C.; Hung, Y. W.; Lue, S. J. Improved electrochemical properties of LiFe0.5Mn0.5PO4/C composite materials via a surface coating process. J. Power. Sources. 2016, 325, 565-74.

55. Hariharan, S.; Ramar, V.; Joshi, S. P.; Balaya, P. Developing a light weight lithium ion battery - an effective material and electrode design for high performance conversion anodes. RSC. Adv. 2013, 3, 6386.

56. Hariharan, S.; Saravanan, K.; Ramar, V.; Balaya, P. A rationally designed dual role anode material for lithium-ion and sodium-ion batteries: case study of eco-friendly Fe3O4. Phys. Chem. Chem. Phys. 2013, 15, 2945-53.

57. Di Lecce, D.; Fasciani, C.; Scrosati, B.; Hassoun, J. A Gel-polymer Sn-C/LiMn0.5Fe0.5PO4 battery using a fluorine-free salt. ACS. Appl. Mater. Interfaces. 2015, 7, 21198-207.

58. Di Lecce, D.; Verrelli, R.; Hassoun, J. New lithium ion batteries exploiting conversion/alloying anode and LiFe0.25Mn0.5Co0.25PO4 olivine cathode. Electrochim. Acta. 2016, 220, 384-90.

59. Yu, H.; Zhang, E.; Yu, J.; et al. Relaxing the Jahn-Teller distortion of LiMn0.6Fe0.4PO4 cathodes via Mg/Ni dual-doping for high-rate and long-life Li-ion batteries. J. Mater. Chem. A. 2024, 12, 26076-82.

60. Leslie, K.; Harlow, J.; Rathore, D.; Tuul, K.; Metzger, M. Correlating Mn dissolution and capacity fade in LiMn0.8Fe0.2PO4/graphite cells during cycling and storage at elevated temperature. J. Electrochem. Soc. 2024, 171, 040520.

61. Meng, Y.; Wang, Y.; Zhang, Z.; Chen, X.; Guo, Y.; Xiao, D. A phytic acid derived LiMn0.5Fe0.5PO4/Carbon composite of high energy density for lithium rechargeable batteries. Sci. Rep. 2019, 9, 6665.

62. Song, Y.; Zhong, H.; Hu, T.; et al. Dually encapsulated LiMn0.6Fe0.4PO4 architecture with MXenes and amorphous carbon to achieve high-performance and ultra-stable lithium batteries. J. Mater. Chem. A. 2025, 13, 2590-9.

63. Hu, H.; Liu, X.; Lei, Y.; et al. Enhancing the ultra-high rate capability of manganese-based olivine cathode by in situ catalytic growth of graphene carbon layer. J. Energy. Storage. 2024, 79, 110198.

64. Wang, Y.; Yong, F.; Wang, Z.; et al. LiMn0.8Fe0.2PO4/C nanoparticles via polystyrene template carburizing enhance the rate capability and capacity reversibility of cathode materials. ACS. Appl. Nano. Mater. 2024, 7, 4024-34.

65. Han, D. W.; Ryu, W. H.; Kim, W. K.; et al. Tailoring crystal structure and morphology of LiFePO4/C cathode materials synthesized by heterogeneous growth on nanostructured LiFePO4 seed crystals. ACS. Appl. Mater. Interfaces. 2013, 5, 1342-7.

66. Ravnsbæk, D. B.; Xiang, K.; Xing, W.; et al. Extended solid solutions and coherent transformations in nanoscale olivine cathodes. Nano. Lett. 2014, 14, 1484-91.

67. Guo, X.; Wang, M.; Huang, X.; Zhao, P.; Liu, X.; Che, R. Direct evidence of antisite defects in LiFe0.5Mn0.5PO4 via atomic-level HAADF-EELS. J. Mater. Chem. A. 2013, 1, 8775.

68. Amisse, R.; Hamelet, S.; Hanzel, D.; Courty, M.; Dominko, R.; Masquelier, C. Nonstochiometry in LiFe0.5Mn0.5PO4: structural and electrochemical properties. J. Electrochem. Soc. 2013, 160, A1446-50.

69. Burgos, A.; Du, J.; Yan, D.; et al. Off-stoichiometric design of a manganese-rich mixed olivine Li-ion cathode for improved specific energy. Mater. Today. Energy. 2024, 45, 101658.

70. Zhao, Q.; Li, X.; Tang, F.; et al. Compatibility between Lithium bis(oxalate)borate-based electrolytes and a LiFe0.6Mn0.4PO4/C cathode for lithium-ion batteries. Energy. Technol. 2017, 5, 406-13.

71. Ziv, B.; Borgel, V.; Aurbach, D.; Kim, J. H.; Xiao, X.; Powell, B. R. Investigation of the reasons for capacity fading in Li-ion battery cells. J. Electrochem. Soc. 2014, 161, A1672.

72. Liu, Y.; Wen, X.; Huang, T.; Yu, A. Electrochemically induced interface by LiBOB to enhance cycling performance of LiFe0.4Mn0.6PO4 cathode for lithium-ion batteries. J. Power. Sources. 2024, 623, 235398.

73. Fang, G.; Pan, Y.; Yang, H.; Chen, W.; Wu, M. Enhanced LiMn0.8Fe0.2PO4 cathode performance enabled by the 1,3,2-dioxathiolane-2,2-dioxide electrolyte additive. J. Phys. Chem. C. 2024, 128, 6877-86.

74. Li, S.; Tang, R.; Hu, C.; Niu, X.; Wang, L. Potassium 2-thienyl tri-fluoroborate as a functional electrolyte additive enables stable interfaces for Li/LiFe0.3Mn0.7PO4 batteries. J. Colloid. Interface. Sci. 2023, 646, 150-8.

75. Jeong, S. Y.; Lee, S.; Lee, H.; et al. Thermal characteristics of LiMnxFe1-xPO4 (x = 0, 0.6) cathode materials for safe lithium-ion batteries. J. Power. Sources. 2025, 626, 235755.

76. Park, J. S.; Oh, S. M.; Sun, Y. K.; Myung, S. T. Thermal properties of fully delithiated olivines. J. Power. Sources. 2014, 256, 479-84.

Energy Materials
ISSN 2770-5900 (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/