REFERENCES
1. Ando, F.; Hirai, T.; Uchida, K. Permanent-magnet-based transverse thermoelectric generator with high fill factor driven by anomalous Nernst effect. APL. Energy. 2024, 2, 016103.
2. He, R.; Schierning, G.; Nielsch, K. Thermoelectric devices: a review of devices, architectures, and contact optimization. Adv. Mater. Technol. 2018, 3, 1700256.
3. Ying, P.; Reith, H.; Nielsch, K.; He, R. Geometrical optimization and thermal-stability characterization of Te-free thermoelectric modules based on MgAgSb/Mg3(Bi,Sb)2. Small 2022, 18, 2201183.
4. Bu, Z.; Zhang, X.; Hu, Y.; et al. An over 10% module efficiency obtained using non-Bi2Te3 thermoelectric materials for recovering heat of <600 K. Energy. Environ. Sci. 2021, 14, 6506-13.
5. Ando, F.; Tamaki, H.; Matsumura, Y.; et al. Dual-boost thermoelectric power generation in a GeTe/Mg3Sb2-based module. Mater. Today. Phys. 2023, 36, 101156.
6. Uchida, K.; Zhou, W.; Sakuraba, Y. Transverse thermoelectric generation using magnetic materials. Appl. Phys. Lett. 2021, 118, 140504.
7. Yamauchi, T.; Hamada, Y.; Kurokawa, Y.; Yuasa, H. Anomalous Nernst effect dependence on composition in Fe100-XRhX alloys. Jpn. J. Appl. Phys. 2022, 61, SC1019.
8. Hamada, Y.; Kurokawa, Y.; Yamauchi, T.; Hanamoto, H.; Yuasa, H. Anomalous Nernst effect in Fe-Si alloy films. Appl. Phys. Lett. 2021, 119, 152404.
9. Sakai, A.; Mizuta, Y. P.; Nugroho, A. A.; et al. Giant anomalous Nernst effect and quantum-critical scaling in a ferromagnetic semimetal. Nat. Phys. 2018, 14, 1119-24.
10. Reichlova, H.; Schlitz, R.; Beckert, S.; et al. Large anomalous Nernst effect in thin films of the Weyl semimetal Co2MnGa. Appl. Phys. Lett. 2018, 113, 212405.
11. Ikhlas, M.; Tomita, T.; Koretsune, T.; et al. Large anomalous Nernst effect at room temperature in a chiral antiferromagnet. Nat. Phys. 2017, 13, 1085-90.
12. Li, X.; Xu, L.; Ding, L.; et al. Anomalous Nernst and Righi-Leduc Effects in Mn3Sn: Berry curvature and entropy flow. Phys. Rev. Lett. 2017, 119, 056601.
13. Li, M.; Pi, H.; Zhao, Y.; et al. Large anomalous Nernst effects at room temperature in Fe3Pt thin films. Adv. Mater. 2023, 35, 2301339.
14. He, B.; Şahin, C.; Boona, S. R.; et al. Large magnon-induced anomalous Nernst conductivity in single-crystal MnBi. Joule 2021, 5, 3057-67.
15. Xu, L.; Li, X.; Ding, L.; et al. Anomalous transverse response of Co2MnGa and universality of the room-temperature
16. Park, G.; Reichlova, H.; Schlitz, R.; et al. Thickness dependence of the anomalous Nernst effect and the Mott relation of Weyl semimetal Co2MnGa thin films. Phys. Rev. B. 2020, 101, 060406.
17. Sakai, A.; Minami, S.; Koretsune, T.; et al. Iron-based binary ferromagnets for transverse thermoelectric conversion. Nature 2020, 581, 53-7.
18. Cox, C. D. W.; Caruana, A. J.; Cropper, M. D.; Morrison, K. Anomalous Nernst effect in Co2MnSi thin films. J. Phys. D:Appl. Phys. 2020, 53, 035005.
19. Khadka, D.; Thapaliya, T. R.; Hurtado, Parra., S.; et al. Anomalous Hall and Nernst effects in epitaxial films of topological kagome magnet Fe3Sn2. Phys. Rev. Mater. 2020, 4, 084203.
20. Wuttke, C.; Caglieris, F.; Sykora, S.; et al. Berry curvature unravelled by the anomalous Nernst effect in Mn3Ge. Phys. Rev. B. 2019, 100, 085111.
21. Guin, S. N.; Manna, K.; Noky, J.; et al. Anomalous Nernst effect beyond the magnetization scaling relation in the ferromagnetic Heusler compound Co2MnGa. NPG. Asia. Mater. 2019, 11, 116.
22. Uchida, K.; Hirai, T.; Ando, F.; Sepehri-Amin, H. Hybrid transverse magneto-thermoelectric cooling in artificially tilted multilayers. Adv. Energy. Mater. 2024, 14, 2302375.
23. Hirai, T.; Ando, F.; Sepehri-Amin, H.; Uchida, K. I. Hybridizing anomalous Nernst effect in artificially tilted multilayer based on magnetic topological material. Nat. Commun. 2024, 15, 9643.
25. Coey, J. Perspective and prospects for rare earth permanent magnets. Engineering 2020, 6, 119-31.
26. Gutfleisch, O.; Willard, M. A.; Brück, E.; Chen, C. H.; Sankar, S. G.; Liu, J. P. Magnetic materials and devices for the 21st century: stronger, lighter, and more energy efficient. Adv. Mater. 2011, 23, 821-42.
27. Miura, A.; Sepehri-Amin, H.; Masuda, K.; et al. Observation of anomalous Ettingshausen effect and large transverse thermoelectric conductivity in permanent magnets. Appl. Phys. Lett. 2019, 115, 222403.
28. Sakuraba, Y.; Hyodo, K.; Sakuma, A.; Mitani, S. Giant anomalous Nernst effect in the Co2MnAl1-xSix Heusler alloy induced by Fermi level tuning and atomic ordering. Phys. Rev. B. 2020, 101, 134407.
29. Fujiwara, K.; Kato, Y.; Abe, H.; et al. Berry curvature contributions of kagome-lattice fragments in amorphous Fe-Sn thin films. Nat. Commun. 2023, 14, 3399.
30. Gautam, R.; Hirai, T.; Alasli, A.; et al. Creation of flexible spin-caloritronic material with giant transverse thermoelectric conversion by nanostructure engineering. Nat. Commun. 2024, 15, 2184.
31. Wang, Z.; Pei, K.; Zhang, J.; et al. Correlation between the microstructure and magnetic configuration in coarse-grain inhibited hot-deformed Nd-Fe-B magnets. Acta. Mater. 2019, 167, 103-11.
32. Ramesh, R.; Thomas, G.; Ma, B. M. Magnetization reversal in nucleation controlled magnets. II. Effect of grain size and size distribution on intrinsic coercivity of Fe-Nd-B magnets. J. Appl. Phys. 1988, 64, 6416-23.
33. Nothnagel, P.; Müller, K.; Eckert, D.; Handstein, A. The influence of particle size on the coercivity of sintered NdFeB magnets. J. Magn. Magn. Mater. 1991, 101, 379-81.
34. Lv, M.; Kong, T.; Zhang, W.; et al. Progress on modification of microstructures and magnetic properties of Nd-Fe-B magnets by the grain boundary diffusion engineering. J. Magn. Magn. Mater. 2021, 517, 167278.
35. Cui, W.; Takahashi, Y.; Hono, K. Microstructure optimization to achieve high coercivity in anisotropic Nd-Fe-B thin films. Acta. Mater. 2011, 59, 7768-75.
36. Lee, R.; Brewer, E.; Schaffel, N. Processing of neodymium-iron-boron melt-spun ribbons to fully dense magnets. IEEE. Trans. Magn. 1985, 21, 1958-63.
37. Croat, J. Manufacture of Nd Fe B permanent magnets by rapid solidification. J. Less. Common. Met. 1989, 148, 7-15.
38. Liu, J.; Sepehri-Amin, H.; Ohkubo, T.; Hioki, K.; Hattori, A.; Hono, K. Microstructure evolution of hot-deformed Nd-Fe-B anisotropic magnets. J. Appl. Phys. 2014, 115, 17A744.
39. Sepehri-Amin, H.; Ohkubo, T.; Nagashima, S.; et al. High-coercivity ultrafine-grained anisotropic Nd-Fe-B magnets processed by hot deformation and the Nd-Cu grain boundary diffusion process. Acta. Mater. 2013, 61, 6622-34.
40. Sepehri-Amin, H.; Liu, L.; Ohkubo, T.; et al. Microstructure and temperature dependent of coercivity of hot-deformed Nd-Fe-B magnets diffusion processed with Pr-Cu alloy. Acta. Mater. 2015, 99, 297-306.
41. Sepehri-Amin, H.; Liu, J.; Ohkubo, T.; Hioki, K.; Hattori, A.; Hono, K. Enhancement of coercivity of hot-deformed Nd-Fe-B anisotropic magnet by low-temperature grain boundary diffusion of Nd60Dy20Cu20 eutectic alloy. Scr. Mater. 2013, 69, 647-50.
42. Bahl, C. R. H. Estimating the demagnetization factors for regular permanent magnet pieces. AIP. Advances. 2021, 11, 075028.
43. Breitenstein, O.; Warta, W.; Schubert, M. C. Lock-in Thermography. Springer International Publishing, Cham, 2018.
44. Uchida, K. I.; Daimon, S.; Iguchi, R.; Saitoh, E. Observation of anisotropic magneto-Peltier effect in nickel. Nature 2018, 558, 95-9.
45. Miura, A.; Masuda, K.; Hirai, T.; et al. High-temperature dependence of anomalous Ettingshausen effect in SmCo5-type permanent magnets. Appl. Phys. Lett. 2020, 117, 082408.
46. Wid, O.; Bauer, J.; Müller, A.; Breitenstein, O.; Parkin, S. S.; Schmidt, G. Investigation of the unidirectional spin heat conveyer effect in a 200 nm thin yttrium iron garnet film. Sci. Rep. 2016, 6, 28233.
47. Seki, T.; Iguchi, R.; Takanashi, K.; Uchida, K. Visualization of anomalous Ettingshausen effect in a ferromagnetic film: direct evidence of different symmetry from spin Peltier effect. Appl. Phys. Lett. 2018, 112, 152403.
48. Das, R.; Iguchi, R.; Uchida, K. Systematic investigation of anisotropic Magneto-Peltier effect and anomalous Ettingshausen effect in Ni thin films. Phys. Rev. Appl. 2019, 11, .034022.
49. Campos MF, Romero SA, de Castro JA. Estimation of texture and anisotropy field in a NdDyFeCoB magnet by magnetic measurements at the perpendicular direction. J. Magn. Magn. Mater. 2022, 564, 170119.
50. Lee, Y.; Huang, G.; Shih, C.; Chang, W.; Chang, H.; You, J. Coercivity enhancement in hot deformed Nd2Fe14B-type magnets by doping low-melting RCu alloys (R = Nd, Dy, Nd + Dy). J. Magn. Magn. Mater. 2017, 439, 1-5.
51. Cui, B. Z.; Zheng, L. Y.; Marinescu, M.; Liu, J. F.; Hadjipanayis, G. C. Textured Nd2Fe14B flakes with enhanced coercivity. J. Appl. Phys. 2012, 111, 07A735.
52. Hirosawa, S.; Matsuura, Y.; Yamamoto, H.; Fujimura, S.; Sagawa, M.; Yamauchi, H. Magnetization and magnetic anisotropy of R2Fe14B measured on single crystals. J. Appl. Phys. 1986, 59, 873-9.
53. Hu, C.; Xia, K.; Fu, C.; Zhao, X.; Zhu, T. Carrier grain boundary scattering in thermoelectric materials. Energy. Environ. Sci. 2022, 15, 1406-22.
54. Dong, H.; Wen, B.; Melnik, R. Relative importance of grain boundaries and size effects in thermal conductivity of nanocrystalline materials. Sci. Rep. 2014, 4, 7037.
55. Cahill, D. G.; Watson, S. K.; Pohl, R. O. Lower limit to the thermal conductivity of disordered crystals. Phys. Rev. B. 1992, 46, 6131.
56. Cahill, D. G.; Pohl, R. O. Lattice vibrations and heat transport in crystals and glasses. Annu. Rev. Phys. Chem. 1988, 39, 93-121.
57. Sakuma, A.; Suzuki, T.; Furuuchi, T.; Shima, T.; Hono, K. Magnetism of Nd-Fe films as a model of grain boundary phase in Nd-Fe-B permanent magnets. Appl. Phys. Express. 2016, 9, 013002.
58. Stankiewicz, J.; Bartolomé, J. Magnetotransport properties of Nd2Fe14B. Phys. Rev. B. 1999, 59, 1152.
59. Ding, L.; Koo, J.; Xu, L.; et al. Intrinsic anomalous Nernst effect amplified by disorder in a half-metallic semimetal. Phys. Rev. X. 2019, 9, 041061.
60. Behnia, K.; Aubin, H. Nernst effect in metals and superconductors: a review of concepts and experiments. Rep. Prog. Phys. 2016, 79, 046502.