REFERENCES
1. Lagadec, M. F.; Grimaud, A. Water electrolysers with closed and open electrochemical systems. Nat. Mater. 2020, 19, 1140-50.
2. Gao, X.; Chen, Y.; Wang, Y.; et al. Next-generation green hydrogen: progress and perspective from electricity, catalyst to electrolyte in electrocatalytic water splitting. Nanomicro. Lett. 2024, 16, 237.
3. Qian, Q.; Wang, W.; Wang, G.; et al. Phase-selective synthesis of ruthenium phosphide in hybrid structure enables efficient hybrid water electrolysis under pH-universal conditions. Small 2022, 18, e2200242.
4. Wang, X.; Xi, S.; Huang, P.; et al. Pivotal role of reversible NiO6 geometric conversion in oxygen evolution. Nature 2022, 611, 702-8.
5. Hu, C.; Zhang, L.; Gong, J. Recent progress made in the mechanism comprehension and design of electrocatalysts for alkaline water splitting. Energy. Environ. Sci. 2019, 12, 2620-45.
6. Fu, X.; Shi, R.; Jiao, S.; Li, M.; Li, Q. Structural design for electrocatalytic water splitting to realize industrial-scale deployment: strategies, advances, and perspectives. J. Energy. Chem. 2022, 70, 129-53.
7. Wang, Z.; Xiao, B.; Lin, Z.; et al. In-situ surface decoration of RuO2 nanoparticles by laser ablation for improved oxygen evolution reaction activity in both acid and alkali solutions. J. Energy. Chem. 2021, 54, 510-8.
8. Dang, Q.; Lin, H.; Fan, Z.; et al. Iridium metallene oxide for acidic oxygen evolution catalysis. Nat. Commun. 2021, 12, 6007.
9. Wu, Z.; Lu, X. F.; Zang, S.; Lou, X. W. Non-noble-metal-based electrocatalysts toward the oxygen evolution reaction. Adv. Funct. Mater. 2020, 30, 1910274.
10. Zhang, Z.; Li, X.; Zhong, C.; et al. Spontaneous synthesis of silver-nanoparticle-decorated transition-metal hydroxides for enhanced oxygen evolution reaction. Angew. Chem. Int. Ed. 2020, 59, 7245-50.
11. Yu, J.; Yu, F.; Yuen, M.; Wang, C. Two-dimensional layered double hydroxides as a platform for electrocatalytic oxygen evolution. J. Mater. Chem. A. 2021, 9, 9389-430.
12. Zhang, M.; Zhang, Y.; Ye, L.; Guo, B.; Gong, Y. Hierarchically constructed Ag nanowires shelled with ultrathin Co-LDH nanosheets for advanced oxygen evolution reaction. Appl. Catal. B. Environ. 2021, 298, 120601.
13. Wang, T.; Liu, X.; Li, Y.; Li, F.; Deng, Z.; Chen, Y. Ultrasonication-assisted and gram-scale synthesis of Co-LDH nanosheet aggregates for oxygen evolution reaction. Nano. Res. 2020, 13, 79-85.
14. Zhang, J.; Yan, Y.; Mei, B.; et al. Local spin-state tuning of cobalt-iron selenide nanoframes for the boosted oxygen evolution. Energy. Environ. Sci. 2021, 14, 365-73.
15. Li, F.; Ai, H.; Liu, D.; Lo, K. H.; Pan, H. An enhanced oxygen evolution reaction on 2D CoOOH via strain engineering: an insightful view from spin state transition. J. Mater. Chem. A. 2021, 9, 17749-59.
16. Li, X.; Ge, L.; Du, Y.; et al. Highly oxidized oxide surface toward optimum oxygen evolution reaction by termination engineering. ACS. Nano. 2023, 17, 6811-21.
17. Hicks, J.; Mansikkamäki, A.; Vasko, P.; Goicoechea, J. M.; Aldridge, S. A nucleophilic gold complex. Nat. Chem. 2019, 11, 237-41.
18. Wang, D.; Li, Q.; Han, C.; Lu, Q.; Xing, Z.; Yang, X. Atomic and electronic modulation of self-supported nickel-vanadium layered double hydroxide to accelerate water splitting kinetics. Nat. Commun. 2019, 10, 3899.
19. Xu, H.; Liu, T.; Bai, S.; et al. Cation exchange strategy to single-atom noble-metal doped CuO nanowire arrays with ultralow overpotential for H2O splitting. Nano. Lett. 2020, 20, 5482-9.
20. Cao, D.; Zhang, Z.; Cui, Y.; et al. Frontispiz: one-step approach for constructing high-density single-atom catalysts toward overall water splitting at industrial current densities. Angew. Chem. Int. Ed. 2023, 135, e202380961.
21. Liang, X.; Shi, L.; Liu, Y.; et al. Activating inert, nonprecious perovskites with iridium dopants for efficient oxygen evolution reaction under acidic conditions. Angew. Chem. Int. Ed. 2019, 58, 7631-5.
22. Wang, Q.; Zhang, Z.; Cai, C.; et al. Single iridium atom doped Ni2P catalyst for optimal oxygen evolution. J. Am. Chem. Soc. 2021, 143, 13605-15.
23. Li, P.; Duan, X.; Kuang, Y.; Sun, X. Iridium in tungsten trioxide matrix as an efficient Bi-functional electrocatalyst for overall water splitting in acidic media. Small 2021, 17, e2102078.
24. Wang, P.; Zhang, C.; Ding, J.; Ji, Y.; Li, Y.; Zhang, W. Motivating inert strontium manganate with iridium dopants as efficient electrocatalysts for oxygen evolution in acidic electrolyte. Small 2024, 20, e2305662.
25. Liu, J.; Xiao, J.; Wang, Z.; et al. Structural and electronic engineering of Ir-doped Ni-(Oxy)hydroxide nanosheets for enhanced oxygen evolution activity. ACS. Catal. 2021, 11, 5386-95.
26. Yin, J.; Jin, J.; Lu, M.; et al. Iridium single atoms coupling with oxygen vacancies boosts oxygen evolution reaction in acid media. J. Am. Chem. Soc. 2020, 142, 18378-86.
27. Zhao, W.; Xu, F.; Liu, L.; Liu, M.; Weng, B. Strain-induced electronic structure modulation on MnO2 nanosheet by Ir incorporation for efficient water oxidation in acid. Adv. Mater. 2023, 35, e2308060.
28. You, H.; Wu, D.; Si, D.; et al. Monolayer NiIr-layered double hydroxide as a long-lived efficient oxygen evolution catalyst for seawater splitting. J. Am. Chem. Soc. 2022, 144, 9254-63.
29. Wang, X.; Ma, R.; Li, S.; et al. In situ electrochemical oxyanion steering of water oxidation electrocatalysts for optimized activity and stability. Adv. Energy. Mater. 2023, 13, 2300765.
30. Liang, R.; Zhang, B.; Du, Y.; Han, X.; Li, S.; Xu, P. Understanding the anion effect of basic cobalt salts for the electrocatalytic oxygen evolution reaction. ACS. Catal. 2023, 13, 8821-9.
31. Wang, A.; Wang, W.; Xu, J.; et al. Enhancing oxygen evolution reaction by simultaneously triggering metal and lattice oxygen redox pair in iridium loading on Ni-doped Co3O4. Adv. Energy. Mater. 2023, 13, 2302537.
32. Cao, J.; Mou, T.; Mei, B.; et al. Improved electrocatalytic activity and stability by single iridium atoms on iron-based layered double hydroxides for oxygen evolution. Angew. Chem. Int. Ed. 2023, 135, e202310973.
33. Zhu, Y.; Wang, J.; Koketsu, T.; et al. Iridium single atoms incorporated in Co3O4 efficiently catalyze the oxygen evolution in acidic conditions. Nat. Commun. 2022, 13, 7754.
34. Chen, M.; Liu, D.; Feng, J.; et al. In-situ generation of Ni-CoOOH through deep reconstruction for durable alkaline water electrolysis. Chem. Eng. J. 2022, 443, 136432.
35. Li, X.; Zhang, H.; Hu, Q.; et al. Amorphous NiFe oxide-based nanoreactors for efficient electrocatalytic water oxidation. Angew. Chem. Int. Ed. 2023, 62, e202300478.
36. Guan, D.; Zhou, W.; Shao, Z. Rational design of superior electrocatalysts for water oxidation: crystalline or amorphous structure? Small. Sci. 2021, 1, 2100030.
37. Hu, Y.; Luo, G.; Wang, L.; et al. Single Ru atoms stabilized by hybrid amorphous/crystalline FeCoNi layered double hydroxide for ultraefficient oxygen evolution. Adv. Energy. Mater. 2021, 11, 2002816.
38. Wu, J.; Yang, T.; Fu, R.; et al. Constructing electrocatalysts with composition gradient distribution by solubility product theory: amorphous/crystalline CoNiFe-LDH hollow nanocages. Adv. Funct. Mater. 2023, 33, 2300808.
39. Li, D.; Qin, Y.; Liu, J.; et al. Dense crystalline-amorphous interfacial sites for enhanced electrocatalytic oxygen evolution. Adv. Funct. Mater. 2022, 32, 2107056.
40. Jiang, C.; Yang, J.; Han, X.; et al. Crystallinity-modulated Co2-xVxO4 nanoplates for efficient electrochemical water oxidation. ACS. Catal. 2021, 11, 14884-91.
41. Li, Z.; Zhang, X.; Kang, Y.; et al. Interface engineering of Co-LDH@MOF heterojunction in highly stable and efficient oxygen evolution reaction. Adv. Sci. 2021, 8, 2002631.
42. Dai, S.; Zhang, Z.; Xu, J.; et al. In situ Raman study of nickel bicarbonate for high-performance energy storage device. Nano. Energy. 2019, 64, 103919.
43. Begildayeva, T.; Theerthagiri, J.; Lee, S. J.; Yu, Y.; Choi, M. Y. Unraveling the synergy of anion modulation on Co electrocatalysts by pulsed laser for water splitting: intermediate capturing by in situ/operando Raman studies. Small 2022, 18, e2204309.
44. Sui, P.; Gao, M.; Liu, S.; Xu, C.; Zhu, M.; Luo, J. Carbon dioxide valorization via Formate electrosynthesis in a wide potential window. Adv. Funct. Mater. 2022, 32, 2203794.
45. He, Y.; Zhou, W.; Li, D.; et al. Rare earth doping engineering tailoring advanced oxygen-vacancy Co3O4 with tunable structures for high-efficiency energy storage. Small 2023, 19, e2206956.
46. Qi, J.; Lin, Y.; Chen, D.; Zhou, T.; Zhang, W.; Cao, R. Autologous cobalt phosphates with modulated coordination sites for electrocatalytic water oxidation. Angew. Chem. Int. Ed. 2020, 132, 9002-6.
47. Wang, C.; Zhai, P.; Xia, M.; et al. Engineering lattice oxygen activation of iridium clusters stabilized on amorphous bimetal borides array for oxygen evolution reaction. Angew. Chem. Int. Ed. 2021, 133, 27332-40.
48. Zhang, N.; Feng, X.; Rao, D.; et al. Lattice oxygen activation enabled by high-valence metal sites for enhanced water oxidation. Nat. Commun. 2020, 11, 4066.
49. Huang, H.; Ning, S.; Xie, Y.; et al. Synergistic modulation of electronic interaction to enhance intrinsic activity and conductivity of Fe-Co-Ni hydroxide nanotube for highly efficient oxygen evolution electrocatalyst. Small 2023, 19, e2302272.
50. Feng, C.; Zhang, Z.; Wang, D.; et al. Tuning the electronic and steric interaction at the atomic interface for enhanced oxygen evolution. J. Am. Chem. Soc. 2022, 144, 9271-9.
51. Yao, N.; Wang, G.; Jia, H.; et al. Intermolecular energy gap-induced formation of high-valent cobalt species in CoOOH surface layer on cobalt sulfides for efficient water oxidation. Angew. Chem. Int. Ed. 2022, 134, e202117178.
52. Gao, P.; Zeng, Y.; Tang, P.; et al. Understanding the synergistic effects and structural evolution of Co(OH)2 and Co3O4 toward boosting electrochemical charge storage. Adv. Funct. Mater. 2022, 32, 2108644.
53. Zhu, W.; Yao, F.; Cheng, K.; et al. Direct dioxygen radical coupling driven by octahedral ruthenium-oxygen-cobalt collaborative coordination for acidic oxygen evolution reaction. J. Am. Chem. Soc. 2023, 145, 17995-8006.
54. Tang, K.; Hu, H.; Xiong, Y.; et al. Hydrophobization engineering of the air-cathode catalyst for improved oxygen diffusion towards efficient zinc-air batteries. Angew. Chem. Int. Ed. 2022, 61, e202202671.
55. Zhang, B.; Wang, L.; Cao, Z.; et al. High-valence metals improve oxygen evolution reaction performance by modulating 3d metal oxidation cycle energetics. Nat. Catal. 2020, 3, 985-92.