REFERENCES

1. Liu, S.; Li, J.; Xiao, W.; et al. Buried interface molecular hybrid for inverted perovskite solar cells. Nature 2024, 632, 536-42.

2. Liang, Z.; Zhang, Y.; Xu, H.; et al. Homogenizing out-of-plane cation composition in perovskite solar cells. Nature 2023, 624, 557-63.

3. Jang, W. J.; Kim, E. H.; Cho, J. H.; Lee, D.; Kim, S. Y. Elucidating the role of alkali metal carbonates in impact on oxygen vacancies for efficient and stable perovskite solar cells. Adv. Sci. 2024, 11, e2406657.

4. Kang, S. B.; Patil, P.; Yoon, G. W.; Han, G. S.; Jung, H. S.; Kim, D. H. Study of interface engineering on perovskite-based indoor photovoltaics for powering Internet-of-Things. Chem. Eng. J. 2024, 502, 157973.

5. Kim, D.; Lee, S.; Kim, G. M.; Oh, S. Y. Physical effects of 2PACz layers as hole-transport material on the performance of perovskite solar cell. Electron. Mater. Lett. 2023, 19, 510-7.

6. Ali, S.; Javed, S.; Akram, M. A.; et al. Investigating the electrical and optical properties of nickle and strontium co-doped CsPbBr3 nanocrystals: potential absorber material for perovskite solar cells. Trans. Electr. Electron. Mater. 2024, 25, 422-33.

7. Fakharuddin, A.; Gangishetty, M. K.; Abdi-jalebi, M.; et al. Perovskite light-emitting diodes. Nat. Electron. 2022, 5, 203-16.

8. Chen, W.; Huang, Z.; Yao, H.; et al. Highly bright and stable single-crystal perovskite light-emitting diodes. Nat. Photon. 2023, 17, 401-7.

9. Jiang, J.; Shi, M.; Xia, Z.; et al. Efficient pure-red perovskite light-emitting diodes with strong passivation via ultrasmall-sized molecules. Science. Advances. 2024, 10, eadn5683.

10. Shin, G.; Yun, D.; Ha, Y.; et al. Enhancing performance of perovskite nanocrystal light-emitting diodes with perfluorinated ionomer and PEDOT:PSS. Trans. Electr. Electron. Mater. 2024, 25, 40-7.

11. Shinde, P. V.; Patra, A.; Rout, C. S. A review on the sensing mechanisms and recent developments on metal halide-based perovskite gas sensors. J. Mater. Chem. C. 2022, 10, 10196-223.

12. Hou, Y.; Li, J.; Yoon, J.; et al. Retina-inspired narrowband perovskite sensor array for panchromatic imaging. Sci. Adv. 2023, 9, eade2338.

13. Park, J.; Ahn, J.; Jung, B. K.; et al. Reusable gasochromic gas sensor with enhanced selectivity for acidic gases via surface-engineered all-inorganic perovskite nanocrystals. Chem. Eng. J. 2024, 498, 155420.

14. Liu, A.; Zhu, H.; Bai, S.; et al. High-performance metal halide perovskite transistors. Nat. Electron. 2023, 6, 559-71.

15. Kim, S. J.; Im, I. H.; Baek, J. H.; et al. Linearly programmable two-dimensional halide perovskite memristor arrays for neuromorphic computing. Nat. Nanotechnol. 2025, 20, 83-92.

16. Nketia-yawson, V.; Nketia-yawson, B.; Woong, Jo. J. High-mobility electrolyte-gated perovskite transistors on flexible plastic substrate via interface and composition engineering. Appl. Surf. Sci. 2023, 623, 156984.

17. Pathak, A. K.; Mukherjee, S.; Batabyal, S. K. 2D layered (CH3NH3)3Sb2ClxI9-x lead-free perovskite for weak light detection. Electron. Mater. Lett. 2024, 20, 425-31.

18. Seo, H.; Park, T.; Ali, A.; et al. Quantum dots and perovskites-based physically unclonable functions for binary and ternary keys via optical-to-electrical conversion. Adv. Funct. Mater. 2025, 35, 2507395.

19. Bhaumik, S.; Ray, S.; Batabyal, S. K. Recent advances of lead-free metal halide perovskite single crystals and nanocrystals: synthesis, crystal structure, optical properties, and their diverse applications. Mater. Today. Chem. 2020, 18, 100363.

20. Tan, Z. K.; Moghaddam, R. S.; Lai, M. L.; et al. Bright light-emitting diodes based on organometal halide perovskite. Nat. Nanotechnol. 2014, 9, 687-92.

21. Peng, C.; Yao, H.; Ali, O.; et al. Weakly space-confined all-inorganic perovskites for light-emitting diodes. Nature 2025, 643, 96-103.

22. Kim, J. S.; Heo, J. M.; Park, G. S.; et al. Ultra-bright, efficient and stable perovskite light-emitting diodes. Nature 2022, 611, 688-94.

23. Gao, Y.; Li, H.; Dai, X.; et al. Microsecond-response perovskite light-emitting diodes for active-matrix displays. Nat. Electron. 2024, 7, 487-96.

24. Yu, Y.; Wang, B. F.; Shen, Y.; et al. Efficient blue perovskite LEDs via bottom-up charge manipulation for solution-processed active-matrix displays. Adv. Mater. 2025, 37, e2503234.

25. Chen, Y.; Yang, X.; Fan, X.; et al. Electrohydrodynamic inkjet printing of three-dimensional perovskite nanocrystal arrays for full-color micro-LED displays. ACS. Appl. Mater. Interfaces. 2024, 16, 24908-19.

26. Mahyoub, S. A.; Farid, A.; Azeem, M. Z.; Fadhil, D. A. A.; Qaraah, F. A.; Drmosh, Q. A. Physical vapor deposition techniques for CO2 electroreduction: a review. Small. Struct. 2025, 6, 2400501.

27. Umar, A.; Hahn, Y. B. Aligned hexagonal coaxial-shaped ZnO nanocolumns on steel alloy by thermal evaporation. Appl. Phys. Lett. 2006, 88, 173120.

28. Wang, H.; Li, J.; Huang, M.; et al. Single-atom alloys prepared by two-step thermal evaporation. Nano. Res. 2024, 17, 2808-13.

29. Lee, G. Branched MgO nanowires synthesized by thermal evaporation method in air at atmospheric pressure. Korean. J. Met. Mater. 2023, 61, 444-8.

30. Lee, G. Effect of oxygen concentration on the growth and cathodoluminescence properties of MgO nanowires. Korean. J. Met. Mater. 2023, 61, 509-13.

31. Kim, S. K.; Kim, K.; Park, H.; et al. Patternization of cathode metal using low surface energy organic molecules in OLED thermal evaporation process. J. Ind. Eng. Chem. 2022, 114, 213-20.

32. Jung, S. W.; Kim, K.; Park, H.; et al. Patternable semi-transparent cathode using thermal evaporation for OLED display applications. Adv. Elect. Mater. 2021, 7, 2001101.

33. Chen, W.; Zhang, J.; Xu, G.; et al. A semitransparent inorganic perovskite film for overcoming ultraviolet light instability of organic solar cells and achieving 14.03% efficiency. Adv. Mater. 2018, 30, e1800855.

34. Yeh, K. C.; Chan, C. H. High brightness and low operating voltage CsPbBr3 perovskite LEDs by single-source vapor deposition. Sci. Rep. 2024, 14, 3351.

35. Zhang, C.; Chen, J.; Kong, L.; et al. Core/shell metal halide perovskite nanocrystals for optoelectronic applications. Adv. Funct. Mater. 2021, 31, 2100438.

36. Das Adhikari, S.; Gualdrón Reyes, A. F.; Paul, S.; et al. Impact of core-shell perovskite nanocrystals for LED applications: successes, challenges, and prospects. Chem. Sci. 2023, 14, 8984-99.

37. Park, M.; Park, J.; Lee, J.; et al. Efficient perovskite light‐emitting diodes using polycrystalline core-shell-mimicked nanograins. Adv. Funct. Mater. 2019, 29, 1902017.

38. Hou, S.; Gangishetty, M. K.; Quan, Q.; Congreve, D. N. Efficient blue and white perovskite light-emitting diodes via manganese doping. Joule 2018, 2, 2421-33.

39. Shi, Y.; Xi, J.; Lei, T.; et al. Rubidium doping for enhanced performance of highly efficient formamidinium-based perovskite light-emitting diodes. ACS. Appl. Mater. Interfaces. 2018, 10, 9849-57.

40. Yang, D.; Huo, D. Cation doping and strain engineering of CsPbBr3-based perovskite light emitting diodes. J. Mater. Chem. C. 2020, 8, 6640-53.

41. Wang, R.; Zhao, J.; Ma, J.; et al. Yttrium cation doping and phenylphosphonic acid passivation for pure-red perovskite light-emitting diodes. ACS. Energy. Lett. 2024, 9, 4699-707.

42. Chu, Z.; Zhang, W.; Jiang, J.; et al. Blue perovskite light-emitting diodes using multifunctional small molecule dopants. Adv. Mater. 2025, 37, e2409718.

43. Zhang, L.; Sun, C.; He, T.; et al. High-performance quasi-2D perovskite light-emitting diodes: from materials to devices. Light. Sci. Appl. 2021, 10, 61.

44. Sun, C.; Jiang, Y.; Cui, M.; et al. High-performance large-area quasi-2D perovskite light-emitting diodes. Nat. Commun. 2021, 12, 2207.

45. Zhang, F.; Cai, B.; Song, J.; Han, B.; Zhang, B.; Zeng, H. Efficient blue perovskite light-emitting diodes boosted by 2D/3D energy cascade channels. Adv. Funct. Mater. 2020, 30, 2001732.

46. Jiang, N.; Wang, Z.; Zheng, Y.; et al. 2D/3D heterojunction perovskite light-emitting diodes with tunable ultrapure blue emissions. Nano. Energy. 2022, 97, 107181.

47. He, Z.; Peng, C.; Guo, R.; et al. 2D/3D perovskite heterojunctions: composition and application in light-emitting diodes. Chem. Eng. J. 2025, 505, 159894.

48. Kuang, C.; Hu, Z.; Yuan, Z.; et al. Critical role of additive-induced molecular interaction on the operational stability of perovskite light-emitting diodes. Joule 2021, 5, 618-30.

49. Liu, Y.; Ono, L. K.; Qi, Y. Organic additive engineering toward efficient perovskite light‐emitting diodes. InfoMat 2020, 2, 1095-108.

50. Liu, Z.; Qiu, W.; Peng, X.; et al. Perovskite light-emitting diodes with EQE exceeding 28% through a synergetic dual-additive strategy for defect passivation and nanostructure regulation. Adv. Mater. 2021, 33, e2103268.

51. Islam, A.; Saeed Khan, R. A.; Khalid, A.; et al. Zwitterions: an innovative class of additive materials for perovskite light-emitting diodes. Mater. Today. Energy. 2025, 47, 101752.

52. Zou, S.; Fan, K.; Liu, Z.; et al. Additive-stabilized emission centers for blue perovskite light-emitting diodes. ACS. Appl. Mater. Interfaces. 2023, 15, 26778-86.

53. Liu, M.; Johnston, M. B.; Snaith, H. J. Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature 2013, 501, 395-8.

54. Hu, Y.; Wang, Q.; Shi, Y.; et al. Vacuum-evaporated all-inorganic cesium lead bromine perovskites for high-performance light-emitting diodes. J. Mater. Chem. C. 2017, 5, 8144-9.

55. Mariano, F.; Listorti, A.; Rizzo, A.; Colella, S.; Gigli, G.; Mazzeo, M. Thermally evaporated hybrid perovskite for hetero-structured green light-emitting diodes. Appl. Phys. Lett. 2017, 111, 163301.

56. Liu, X.; Tan, X.; Liu, Z.; et al. Sequentially vacuum evaporated high-quality CsPbBr3 films for efficient carbon-based planar heterojunction perovskite solar cells. J. Power. Sources. 2019, 443, 227269.

57. Lee, W.; Lee, J.; Lee, H. D.; et al. Controllable deposition of organic metal halide perovskite films with wafer-scale uniformity by single source flash evaporation. Sci. Rep. 2020, 10, 18781.

58. Cho, H.; Jeong, S. H.; Park, M. H.; et al. Overcoming the electroluminescence efficiency limitations of perovskite light-emitting diodes. Science 2015, 350, 1222-5.

59. Xie, S.; Osherov, A.; Bulović, V. All-vacuum-deposited inorganic cesium lead halide perovskite light-emitting diodes. APL. Materials. 2020, 8, 051113.

60. Lian, X.; Wang, X.; Ling, Y.; et al. Light emitting diodes based on inorganic composite halide perovskites. Adv. Funct. Mater. 2019, 29, 1807345.

61. Otalora, C.; Botero, M. A.; Mantilla, M. A.; Petit, J. F.; Ospina, R.; Gordillo, G. Hybrid perovskite films deposited by thermal evaporation from a single source. J. Mater. Sci. Mater. Electron. 2021, 32, 12151-63.

62. Kim, S. J.; Byun, J.; Jeon, T.; Jin, H. M.; Hong, H. R.; Kim, S. O. Perovskite light-emitting diodes via laser crystallization: systematic investigation on grain size effects for device performance. ACS. Appl. Mater. Interfaces. 2018, 10, 2490-5.

63. Shin, M.; Lee, H. S.; Sim, Y. C.; Cho, Y. H.; Cheol Choi, K.; Shin, B. Modulation of growth kinetics of vacuum-deposited CsPbBr3 films for efficient light-emitting diodes. ACS. Appl. Mater. Interfaces. 2020, 12, 1944-52.

64. Rigi VJ, Jayaraj MK, Saji KJ. Effect of substrate and substrate temperature on the deposition of MoS2 by radio frequency magnetron sputtering. J. Vac. Sci. Technol. A. 2022, 40, 032201.

65. Gil-Escrig, L.; Nespoli, J.; Elhorst, F. D.; et al. Tuning substrate temperature for enhanced vacuum-deposited wide-bandgap perovskite solar cells: insights from morphology, charge transport, and drift-diffusion simulations. EES. Solar. 2025, 1, 391-403.

66. Chen, C.; Han, T. H.; Tan, S.; et al. Efficient flexible inorganic perovskite light-emitting diodes fabricated with CsPbBr3 emitters prepared via low-temperature in situ dynamic thermal crystallization. Nano. Lett. 2020, 20, 4673-80.

67. Han, B.; Shan, Q.; Zhang, F.; Song, J.; Zeng, H. Giant efficiency and color purity enhancement in multicolor inorganic perovskite light-emitting diodes via heating-assisted vacuum deposition. J. Semicond. 2020, 41, 052205.

68. Mu, H.; Hu, F.; Wang, R.; Jia, J.; Shuang, Xiao. Effects of in-situ annealing on the electroluminescence performance of the Sn-based perovskite light-emitting diodes prepared by thermal evaporation. J. Lumin. 2020, 226, 117493.

69. Peng, C.; He, Z.; Guo, R.; et al. The synergy of pre-frozen substrates and post-annealing for high-efficiency co-evaporated blue perovskite LEDs. Chem. Eng. J. 2024, 493, 152579.

70. Yuan, F.; Xi, J.; Dong, H.; et al. All‐inorganic hetero‐structured cesium tin halide perovskite light‐emitting diodes with current density over 900 A·cm-2 and its amplified spontaneous emission behaviors. Phys. Rapid. Res. Lett. 2018, 12, 1800090.

71. Huang, J.; Yao, H.; You, F.; et al. Effects of post-annealing on the property of CsPbBr3 films and the performance of relevant light-emitting diodes. J. Lumin. 2024, 275, 120771.

72. Xiang, G.; Zhou, Y.; Peng, W.; et al. Vacuum-deposited perovskite CsPbBr3 thin-films for temperature-stable Si based pure-green all-inorganic light-emitting diodes. Ceram. Int. 2023, 49, 21624-33.

73. Bai, T.; Wang, S.; Zhang, K.; Chu, C.; Sun, Y.; Yi, L. High stability and strong luminescence CsPbBr3-Cs4PbBr6 thin films for all-inorganic perovskite light-emitting diodes. RSC. Adv. 2023, 13, 24413-22.

74. Luo, J.; Yang, L.; Tan, Z.; et al. Efficient blue light emitting diodes based on europium halide perovskites. Adv. Mater. 2021, 33, e2101903.

75. Qiu, C.; Dumont, A.; Li, P.; Lu, Z. Thermally stable charge transport materials for vapor-phase fabrication of perovskite devices. Adv. Photonics. Res. 2021, 2, 2000140.

76. Peng, C.; He, Z.; Guo, R.; et al. The synergy of the buried interface surface energy and temperature for thermal evaporated perovskite light-emitting diodes. ACS. Appl. Mater. Interfaces. 2023, 15, 15768-74.

77. Li, J.; Yang, L.; Guo, Q.; et al. All-vacuum fabrication of yellow perovskite light-emitting diodes. Sci. Bull. 2022, 67, 178-85.

78. Kim, N.; Shin, M.; Jun, S.; et al. Highly efficient vacuum-evaporated CsPbBr3 perovskite light-emitting diodes with an electrical conductivity enhanced polymer-assisted passivation layer. ACS. Appl. Mater. Interfaces. 2021, 13, 37323-30.

79. Xu, L.; Zhou, L.; Yan, M.; Luo, G.; Yang, D.; Fang, Y. High-brightness thermally evaporated perovskite light-emitting diodes via dual-interface engineering. Opt. Mater. 2024, 150, 115223.

80. Song, L.; Huang, L.; Liu, Y.; et al. Efficient thermally evaporated perovskite light-emitting devices via a bilateral interface engineering strategy. J. Phys. Chem. Lett. 2021, 12, 6165-73.

81. Lee, S.; Woo, M. Y.; Kim, C.; et al. Buried interface modulation via PEDOT:PSS ionic exchange for the Sn-Pb mixed perovskite based solar cells. Chem. Eng. J. 2024, 479, 147587.

82. Kwack, H.; Kim, M.; Cho, Y.; Kim, T.; Myoung, J.; Shim, W. Thickness controlled CsPbBr3 nanocrystal films for high efficiency (6% EQE) perovskite LEDs. J. Korean. Ceram. Soc. 2025, 62, 1023-9.

83. Zhao, L.; Lee, K. M.; Roh, K.; Khan, S. U. Z.; Rand, B. P. Improved outcoupling efficiency and stability of perovskite light-emitting diodes using thin emitting layers. Adv. Mater. 2019, 31, e1805836.

84. Gu, Y.; Yao, X.; Long, M.; Geng, H.; Hu, M. Ultra-broadband light-emitting diodes from co-evaporated lead-free CsCu2I3. Mater. Lett. 2022, 323, 132607.

85. Jia, K.; Song, L.; Hu, Y.; et al. Improved performance for thermally evaporated perovskite light-emitting devices via defect passivation and carrier regulation. ACS. Appl. Mater. Interfaces. 2020, 12, 15928-33.

86. Li, J.; Du, P.; Li, S.; et al. High-throughput combinatorial optimizations of perovskite light-emitting diodes based on all-vacuum deposition. Adv. Funct. Mater. 2019, 29, 1903607.

87. Zhao, L.; Zhang, Y.; Sun, K.; et al. Crown-ether modified thermally evaporated perovskite light-emitting devices with increased operational stability. J. Lumin. 2022, 252, 119317.

88. Vo, V. K.; Bae, S. H.; Dang, T. H. T.; et al. Tetraoctylammonium bromide interlayer between NiLiOx and perovskite for light-emitting diodes. ACS. Appl. Mater. Interfaces. 2024, 16, 64210-21.

89. Hsieh, C. A.; Tan, G. H.; Chuang, Y. T.; et al. Vacuum-deposited inorganic perovskite light-emitting diodes with external quantum efficiency exceeding 10% via composition and crystallinity manipulation of emission layer under high vacuum. Adv. Sci. 2023, 10, e2206076.

90. Gao, Y.; Liu, Y.; Zhang, F.; et al. High-performance perovskite light-emitting diodes enabled by passivating defect and constructing dual energy-transfer pathway through functional perovskite nanocrystals. Adv. Mater. 2022, 34, e2207445.

91. Dong, C.; Chen, G.; Wang, S.; Yu, Z.; Ke, W.; Fang, G. High-performance green light-emitting-diode enabled by simultaneous phase engineering and crystallization regulation. Adv. Funct. Mater. 2025, 35, 2502662.

92. Warby, J. H.; Wenger, B.; Ramadan, A. J.; et al. Revealing factors influencing the operational stability of perovskite light-emitting diodes. ACS. Nano. 2020, 14, 8855-65.

93. Xiong, W.; Zou, C.; Tang, W.; et al. Efficient and bright blue perovskite LEDs enabled by a carbazole-phosphonic acid interface. ACS. Energy. Lett. 2023, 8, 2897-903.

94. Kirsch, C.; Naujoks, T.; Haizmann, P.; et al. Zwitterionic carbazole ligands enhance the stability and performance of perovskite nanocrystals in light-emitting diodes. ACS. Appl. Mater. Interfaces. 2023, 15, 32744-52.

95. Lai, Y.; Chen, C.; Yu, M.; et al. Dual functionality of carbazole-based phosphonic acid molecular additives realizes efficient hole transport layer-free perovskite light-emitting diodes. Chem. Eng. J. 2025, 504, 158876.

96. Kim, J. S.; Lee, H. D.; Jung, J. H.; et al. Kinetically-controlled intermediate-direct-pinning for homogeneous energy landscapes in quasi-two-dimensional perovskites for efficient and narrow blue emission. Nat. Commun. 2025, 16, 9590.

97. Yang, X.; Zhang, X.; Deng, J.; et al. Efficient green light-emitting diodes based on quasi-two-dimensional composition and phase engineered perovskite with surface passivation. Nat. Commun. 2018, 9, 570.

98. Chiang, K. M.; Hsu, B. W.; Chang, Y. A.; Yang, L.; Tsai, W. L.; Lin, H. W. Vacuum-deposited organometallic halide perovskite light-emitting devices. ACS. Appl. Mater. Interfaces. 2017, 9, 40516-22.

99. Wang, L.; Li, J.; Du, P.; et al. Effect of post-annealing on thermally evaporated reduced-dimensional perovskite LEDs. Appl. Phys. Lett. 2022, 120, 081107.

100. Fu, Y.; Zhang, Q.; Zhang, D.; et al. Scalable all-evaporation fabrication of efficient light-emitting diodes with hybrid 2D-3D perovskite nanostructures. Adv. Funct. Mater. 2020, 30, 2002913.

101. Meng, N.; Li, Y.; Shi, X.; et al. Fully thermal-evaporated perovskite light-emitting diodes with brightness exceeding 240 000 nits. Adv. Funct. Mater. 2025, 35, e10484.

102. Lee, M. H.; Kim, J.; Han, J.; et al. Fabrication of conductive perovskite-additive networks via sequential vacuum deposition for perovskite light-emitting diodes. ACS. Energy. Lett. 2025, 10, 2898-905.

103. Li, M.; Zhao, Y.; Qin, X.; et al. Conductive phosphine oxide passivator enables efficient perovskite light-emitting diodes. Nano. Lett. 2022, 22, 2490-6.

104. Zhao, C.; Wu, W.; Zhan, H.; et al. Phosphonate/phosphine oxide dyad additive for efficient perovskite light-emitting diodes. Angew. Chem. Int. Ed. Engl. 2022, 61, e202117374.

105. Lin, K.; Xing, J.; Quan, L. N.; et al. Perovskite light-emitting diodes with external quantum efficiency exceeding 20 per cent. Nature 2018, 562, 245-8.

106. Peng, C.; Chen, B.; Liu, X.; et al. High-performance thermally evaporated blue perovskite light-emitting diodes enabled by post-evaporation passivation. Chem. Eng. J. 2024, 499, 155955.

107. Sun, L.; He, X.; He, Z.; et al. Improved vacuum-evaporated blue perovskite light-emitting diodes with phenethylammonium chloride and guanidinium bromide synergistic post-processing modification. Front. Optoelectron. 2025, 18, 5.

108. Liu, N.; Liu, Z.; Huang, Y.; et al. Fluorine-modified passivator for efficient vacuum-deposited pure-red perovskite light-emitting diodes. Light. Sci. Appl. 2025, 14, 118.

109. Dong, J.; Zhao, B.; Ji, H.; et al. Multivalent-effect immobilization of reduced-dimensional perovskites for efficient and spectrally stable deep-blue light-emitting diodes. Nat. Nanotechnol. 2025, 20, 507-14.

110. He, S.; Qin, L.; Liu, Z.; Kang, J. W.; Luo, J.; Du, J. Efficient thermally evaporated near-infrared perovskite light-emitting diodes via phase regulation. Nanomicro. Lett. 2025, 17, 270.

111. He, Z.; Peng, C.; Guo, R.; et al. High-efficiency and emission-tunable inorganic blue perovskite light-emitting diodes based on vacuum deposition. Small 2024, 20, e2305379.

112. Yuan, F.; Ran, C.; Zhang, L.; et al. A cocktail of multiple cations in inorganic halide perovskite toward efficient and highly stable blue light-emitting diodes. ACS. Energy. Lett. 2020, 5, 1062-9.

113. Huang, Y.; Tang, P.; Zhang, W.; et al. Sodium doping for enhanced performance by highly efficient CsPbBr3 quantum dot-based electroluminescent light-emitting diodes. J. Mater. Chem. C. 2022, 10, 3729-37.

114. Ge, Z.; Wan, S.; Moin, M.; et al. Boosting electronic properties of CsPbBr3 nanocrystals via lithium-ion doping and surface passivation for enhanced electrical conductivity and efficient white light-emitting diodes. Adv. Sci. 2025, 12, e2417304.

115. Travis, W.; Glover, E. N. K.; Bronstein, H.; Scanlon, D. O.; Palgrave, R. G. On the application of the tolerance factor to inorganic and hybrid halide perovskites: a revised system. Chem. Sci. 2016, 7, 4548-56.

116. Dumont, A.; Ho, K.; Kung, H.; et al. Extraordinary mass transport and self-assembly: a pathway to fabricate luminescent CsPbBr3 and light-emitting diodes by vapor-phase deposition. Adv. Mater. Interfaces. 2020, 7, 2000506.

117. Qin, F.; Tian, H.; Yan, M.; Fang, Y.; Yang, D. Cesium-lead-bromide perovskites with balanced stoichiometry enabled by sodium-bromide doping for all-vacuum deposited silicon-based light-emitting diodes. J. Mater. Chem. C. 2021, 9, 2016-23.

118. Kim, Y.; Kim, N.; Kwon, J.; et al. Multifunctional NaF-stacked structure for vacuum-processed perovskite light-emitting diodes. ACS. Energy. Lett. 2025, 10, 4194-202.

119. Bai, T.; Wang, S.; Zhang, W.; Yi, L. Vacuum evaporation deposited RbxCs1-xPbBr3 thin films for spectrally tunable and stable all-inorganic blue light-emitting diodes. Mater. Sci. Semicond. Process. 2025, 186, 109085.

120. Musálek, T.; Liška, P.; Morsa, A.; et al. Single- vs dual-source vapor deposition of inorganic halide perovskites: a case study of CsPbBr3. APL. Mater. 2025, 13, 031118.

121. Shekarnoush, M.; Fernandez-izquierdo, L.; Aguirre-tostado, F. S.; Shamsi, Z. H.; Quevedo-lopez, M. A. Decoding the mechanisms of room-temperature solid-state synthesis of halide perovskites. Chem. Mater. 2023, 35, 8909-21.

122. Dmitruk, I.; Vikhrova, Y.; Dmytruk, A.; et al. Clusters of cesium-lead-iodide perovskites in the zeolite matrix. ACS. Omega. 2021, 6, 27711-5.

123. Ya-qiang, S.; Dong-yun, L.; Yang, X.; Hong-liang, G.; Qiang, X.; Hui, Y. Influence mechanism of halide additives on phase conversion, morphology, and purity of alumina powders prepared by solid-phase calcination method. Ceram. Int. 2022, 48, 8403-8.

124. Huang, X.; Sun, Q.; Devakumar, B. Facile low-temperature solid-state synthesis of efficient blue-emitting Cs3Cu2I5 powder phosphors for solid-state lighting. Mater. Today. Chem. 2020, 17, 100288.

125. Huang, X.; Wang, S.; Devakumar, B.; Ma, N. One-step low-temperature solid-state synthesis of lead-free cesium copper halide Cs3Cu2Br5 phosphors with bright blue emissions. Mater. Today. Chem. 2022, 23, 100678.

126. Hu, Y. L.; Wen, Q. L.; Pu, Z. F.; et al. Rapid synthesis of cesium lead halide perovskite nanocrystals by l-lysine assisted solid-phase reaction at room temperature. RSC. Adv. 2020, 10, 34215-24.

127. Zhang, T.; Bai, Y.; Feng, S.; et al. Mechanical milling processed highly luminescent Cs-Pb-Br perovskite emitters. Chem. Commun. 2023, 59, 11827-30.

128. Wang, L.; Ma, D.; Guo, C.; et al. CsPbBr3 nanocrystals prepared by high energy ball milling in one-step and structural transformation from CsPbBr3 to CsPb2Br5. Appl. Surf. Sci. 2021, 543, 148782.

129. Zhu, Z. Y.; Yang, Q. Q.; Gao, L. F.; et al. Solvent-free mechanosynthesis of composition-tunable cesium lead halide perovskite quantum dots. J. Phys. Chem. Lett. 2017, 8, 1610-4.

130. Baek, K. Y.; Lee, W.; Lee, J.; et al. Mechanochemistry-driven engineering of 0D/3D heterostructure for designing highly luminescent Cs-Pb-Br perovskites. Nat. Commun. 2022, 13, 4263.

131. Lim, H.; Baek, K.; Kim, J. I.; et al. Mechanochemical synthesis and thin-film deposition of zero-dimensional cesium lead mixed-halide perovskites for wide-range color-tunable emission. Chem. Mater. 2023, 35, 6294-303.

132. Xuan, T.; Lou, S.; Huang, J.; et al. Monodisperse and brightly luminescent CsPbBr3/Cs4PbBr6 perovskite composite nanocrystals. Nanoscale 2018, 10, 9840-4.

133. Huang, C.; Huang, S.; Wu, C.; Wang, Z.; Yang, C. Cs4PbBr6/CsPbBr3 nanocomposites for all-inorganic electroluminescent perovskite light-emitting diodes. ACS. Appl. Nano. Mater. 2020, 3, 11760-8.

134. Liu, N.; Zhao, X.; Xia, M.; et al. Light-emitting diodes based on all-inorganic copper halide perovskite with self-trapped excitons. J. Semicond. 2020, 41, 052204.

135. Wang, C.; Chen, S.; Jie, J.; et al. Metal halide perovskite single crystals toward electroluminescent applications. Adv. Funct. Mater. 2025, 35, 2401189.

136. Lin, C.; Liu, L.; Xu, J.; et al. Facile synthesis of a dual-phase CsPbBr3-CsPb2Br5 single crystal and its photoelectric performance. RSC. Adv. 2020, 10, 20745-52.

137. Zhang, L.; Li, X.; Tian, Y.; et al. Ultrafast one-step deposition route to fabricate single-crystal CsPbX3 (X = Cl, Cl/Br, Br, and Br/I) photodetectors. ACS. Appl. Mater. Interfaces. 2023, 15, 13270-80.

138. Dang, Y.; Ju, D.; Wang, L.; Tao, X. Recent progress in the synthesis of hybrid halide perovskite single crystals. CrystEngComm 2016, 18, 4476-84.

139. Kominko, Y.; Sabisch, S.; Kanak, A.; et al. Stable, room-temperature, low-threshold amplified spontaneous emission from thermally evaporated cesium lead halide perovskites. ACS. Nano. 2025, 19, 29216-27.

140. Jun, T.; Sim, K.; Iimura, S.; et al. Lead-free highly efficient blue-emitting Cs3Cu2I5 with 0D electronic structure. Adv. Mater. 2018, 30, e1804547.

141. Liu, C.; Chen, H.; Lin, P.; et al. Growth, characterization and photoelectrical properties of orthorhombic and cubic CsPbBr3 single crystals. J. Mater. Sci. Mater. Electron. 2022, 33, 24895-905.

142. Chen, Y. M.; Zhou, Y.; Zhao, Q.; et al. Cs4PbBr6/CsPbBr3 perovskite composites with near-unity luminescence quantum yield: large-scale synthesis, luminescence and formation mechanism, and white light-emitting diode application. ACS. Appl. Mater. Interfaces. 2018, 10, 15905-12.

143. Wang, Z.; Zhang, Y.; Liu, X.; et al. High stability and strong luminescence CsPbBr3/Cs4PbBr6 perovskite nanocomposite: large-scale synthesis, reversible luminescence, and anti-counterfeiting application. Adv. Mater. Technol. 2021, 6, 2100654.

144. Bae, S. R.; Seol, M. J.; Kim, S. Y. CsPbBr3 and Cs4PbBr6 perovskite light-emitting diodes using a thermally evaporated host-dopant system. Nanoscale 2023, 15, 9533-42.

145. Seo, G.; Jung, H.; Creason, T. D.; et al. Lead-free halide light-emitting diodes with external quantum efficiency exceeding 7% using host-dopant strategy. ACS. Energy. Lett. 2021, 6, 2584-93.

146. Matsushima, T.; Qin, C.; Goushi, K.; et al. Enhanced electroluminescence from organic light-emitting diodes with an organic-inorganic perovskite host layer. Adv. Mater. 2018, 30, e1802662.

147. Lanzetta, L.; Gregori, L.; Hernandez, L. H.; et al. Dissociative host-dopant bonding facilitates molecular doping in halide perovskites. ACS. Energy. Lett. 2023, 8, 2858-67.

148. Lee, K. J.; Merdad, N. A.; Maity, P.; et al. Engineering band-type alignment in CsPbBr3 perovskite-based artificial multiple quantum wells. Adv. Mater. 2021, 33, e2005166.

149. Chin, S.; Cortecchia, D.; Forzatti, M.; et al. Stabilizing single-source evaporated perovskites with organic interlayers for amplified spontaneous emission. Adv. Opt. Mater. 2024, 12, 2302701.

150. Li, J.; Du, P.; Guo, Q.; et al. Efficient all-thermally evaporated perovskite light-emitting diodes for active-matrix displays. Nat. Photon. 2023, 17, 435-41.

151. Ji, S.; Bae, S. R.; Hu, L.; et al. Perovskite light-emitting diode display based on MoS2 backplane thin-film transistors. Adv. Mater. 2024, 36, e2309531.

152. Guo, Q.; Wang, L.; Yang, L.; et al. Spectra stable deep-blue light-emitting diodes based on cryolite-like cerium(III) halides with nanosecond d-f emission. Sci. Adv. 2022, 8, eabq2148.

153. Zhu, J.; Li, J.; Huang, Y.; et al. All-thermally evaporated blue perovskite light-emitting diodes for active matrix displays. Small. Methods. 2024, 8, e2300712.

154. Li, Y.; Meng, N.; Xu, Y.; et al. Sequential layer-by-layer deposition for high-performance fully thermal-evaporated red perovskite light-emitting diodes. Nat. Commun. 2025, 16, 6908.

155. Tan, Y.; Li, R.; Xu, H.; Qin, Y.; Song, T.; Sun, B. Ultrastable and reversible fluorescent perovskite films used for flexible instantaneous display. Adv. Funct. Mater. 2019, 29, 1900730.

156. Zhang, X.; Li, J.; Du, P.; et al. Structural engineering for efficient transparent vacuum-deposited perovskite light-emitting diodes toward intelligent display. ACS. Appl. Mater. Interfaces. 2024, 16, 67900-8.

157. Du, P.; Li, J.; Wang, L.; et al. Vacuum-deposited blue inorganic perovskite light-emitting diodes. ACS. Appl. Mater. Interfaces. 2019, 11, 47083-90.

158. Liu, N.; Luo, J.; Tang, J. Shadow effect in dual‐source thermally evaporated perovskite patterns. J. Soc. Info. Display. 2025, 33, 66-73.

159. Burlingame, Q. C.; Kaplan, A. B.; Liu, T.; Loo, Y. Persistent iodine contamination resulting from thermal evaporation of inorganic perovskites. J. Vac. Sci. Technol. B. 2022, 40, 060601.

160. La-placa, M.; Guo, D.; Gil-escrig, L.; Palazon, F.; Sessolo, M.; Bolink, H. J. Dual-source vacuum deposition of pure and mixed halide 2D perovskites: thin film characterization and processing guidelines. J. Mater. Chem. C. 2020, 8, 1902-8.

161. Lee, S.; Kim, J.; Kim, H.; et al. Brightening deep-blue perovskite light-emitting diodes: a path to Rec. 2020. Sci. Adv. 2024, 10, eadn8465.

162. Cao, L. X.; Zhang, Y. H.; Shen, Y.; Li, Y. Q.; Tang, J. X. Crystallization regulation of solution-processed metal halide perovskite light-emitting diodes. Chem. Sci. 2026, 17, 118-36.

163. Gao, Y.; Cai, Q.; He, Y.; et al. Highly efficient blue light-emitting diodes based on mixed-halide perovskites with reduced chlorine defects. Sci. Adv. 2024, 10, eado5645.

164. Li, M.; Yang, Y.; Kuang, Z.; et al. Acceleration of radiative recombination for efficient perovskite LEDs. Nature 2024, 630, 631-5.

165. Xing, S.; Yuan, Y.; Zhang, G.; et al. Energy-efficient perovskite LEDs with rec. 2020 compliance. ACS. Energy. Lett. 2024, 9, 3643-51.

166. Cao, Y. B.; Zhang, D.; Zhang, Q.; et al. High-efficiency, flexible and large-area red/green/blue all-inorganic metal halide perovskite quantum wires-based light-emitting diodes. Nat. Commun. 2023, 14, 4611.

167. Kong, L.; Sun, Y.; Zhao, B.; et al. Fabrication of red-emitting perovskite LEDs by stabilizing their octahedral structure. Nature 2024, 631, 73-9.

168. Zhang, D.; Liu, J.; Duan, X.; et al. Efficient deep-red perovskite light-emitting diodes based on a vertical 3D/2D perovskite heterojunction. Adv. Funct. Mater. 2024, 34, 2403874.

169. Kwon, J.; Kim, Y.; Kim, N.; et al. In situ molecular passivation for improved performance and spectral stability in thermally evaporated pure blue perovskite light-emitting diodes. Ind. Chem. Mater. 2025.

Energy Materials
ISSN 2770-5900 (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/