REFERENCES

1. Nasani, N.; Ramasamy, D.; Antunes, I.; Perez, J.; Fagg, D. P. Electrochemical behaviour of Ni-BZO and Ni-BZY cermet anodes for protonic ceramic fuel cells (PCFCs) - A comparative study. Electrochim. Acta. 2015, 154, 387-96.

2. Duan, C.; Kee, R. J.; Zhu, H.; et al. Highly durable, coking and sulfur tolerant, fuel-flexible protonic ceramic fuel cells. Nature 2018, 557, 217-22.

3. Choi, S.; Kucharczyk, C. J.; Liang, Y.; et al. Exceptional power density and stability at intermediate temperatures in protonic ceramic fuel cells. Nat. Energy. 2018, 3, 202-10.

4. Iwahara, H.; Esaka, T.; Uchida, H.; Maeda, N. Proton conduction in sintered oxides and its application to steam electrolysis for hydrogen production. Solid. State. Ion. 1981, 3-4, 359-63.

5. Iwahara, H.; Uchida, H.; Ono, K.; Ogaki, K. Proton conduction in sintered oxides based on BaCeO3. J. Electrochem. Soc. 1988, 135, 529-33.

6. Murakami, T.; Hester, J. R.; Yashima, M. High proton conductivity in Ba5Er2Al2ZrO13, a hexagonal perovskite-related oxide with intrinsically oxygen-deficient layers. J. Am. Chem. Soc. 2020, 142, 11653-7.

7. Wei, T.; Zhang, L. A.; Chen, Y.; Yang, P.; Liu, M. Promising proton conductor for intermediate-temperature fuel cells: Li13.9Sr0.1Zn(GeO4)4. Chem. Mater. 2017, 29, 1490-5.

8. Garcia-Barriocanal, J.; Rivera-Calzada, A.; Varela, M.; et al. Colossal ionic conductivity at interfaces of epitaxial ZrO2: Y2O3/SrTiO3 heterostructures. Science 2008, 321, 676-80.

9. Xing, Y.; Wu, Y.; Li, L.; et al. Proton shuttles in CeO2/CeO2-δ core-shell structure. ACS. Energy. Lett. 2019, 4, 2601-7.

10. Chen, G.; Sun, W.; Luo, Y.; et al. Advanced fuel cell based on new nanocrystalline structure Gd0.1Ce0.9O2 electrolyte. ACS. Appl. Mater. Interfaces. 2019, 11, 10642-50.

11. Liu, X.; Dong, W.; Tong, Y.; et al. Li effects on layer-structured oxide LixNi0.8Co0.15Al0.05O2-δ: improving cell performance via on-line reaction. Electrochim. Acta. 2019, 295, 325-32.

12. Duan, C.; Kee, R.; Zhu, H.; et al. Highly efficient reversible protonic ceramic electrochemical cells for power generation and fuel production. Nat. Energy. 2019, 4, 230-40.

13. Pei, K.; Zhou, Y.; Xu, K.; et al. Surface restructuring of a perovskite-type air electrode for reversible protonic ceramic electrochemical cells. Nat. Commun. 2022, 13, 2207.

14. Ni, M.; Shao, Z. Fuel cells that operate at 300° to 500 °C. Science 2020, 369, 138-9.

15. Zhou, X.; Yang, J.; Wang, R.; Zhang, W.; Yun, S.; Wang, B. Advances in lithium-ion battery materials for ceramic fuel cells. Energy. Mater. 2022, 2, 200041.

16. Chen, G.; Sun, W.; Luo, Y.; et al. Investigation of layered Ni0.8Co0.15Al0.05LiO2 in electrode for low-temperature solid oxide fuel cells. Int. J. Hydrogen. Energy. 2018, 43, 417-25.

17. Yuan, K.; Yu, Y.; Lu, X.; Ji, X.; Zhu, B. A new technology for spraying advanced low-temperature (300 ~ 600 °C) solid oxide fuel cells. 2017, pp. 132-7.

18. He, Y.; Chen, G.; Zhang, X.; et al. Mechanism for major improvement in SOFC electrolyte conductivity when using lithium compounds as anode. ACS. Appl. Energy. Mater. 2020, 3, 4134-8.

19. Xia, C.; Afzal, M.; Wang, B.; et al. Mixed-conductive membrane composed of natural hematite and Ni0.8Co0.15Al0.05LiO2-δ for electrolyte layer-free fuel cell. Adv. Mater. Lett. 2017, 8, 114-21.

20. Park, H. C.; Virkar, A. V. Bimetallic (Ni-Fe) anode-supported solid oxide fuel cells with gadolinia-doped ceria electrolyte. J. Power. Sources. 2009, 186, 133-7.

21. Yu, Y.; Shah, M. Y.; Wang, H.; et al. Synergistic proton and oxygen ion transport in fluorite oxide-ion conductor. Energy. Mater. Adv. 2024, 5, 0081.

22. Zhang, Y.; Chen, Y.; Yan, M.; Chen, F. Reconstruction of relaxation time distribution from linear electrochemical impedance spectroscopy. J. Power. Sources. 2015, 283, 464-77.

23. Wang, J.; Huang, Q. A.; Li, W.; et al. Insight into the origin of pseudo peaks decoded by the distribution of relaxation times/differential capacity method for electrochemical impedance spectroscopy. J. Electroanal. Chem. 2022, 910, 116176.

24. Wang, J.; Huang, Q. A.; Wang, J.; Zhang, J. Shape factor optimisation for the distribution of relaxation times to better deconvolute electrochemical impedance spectra. J. Electroanal. Chem. 2024, 962, 118272.

25. Norbya, T. Proton conduction in oxides. Solid. State. Ion. 1990, 40-1, 857-62.

26. Uchida, H.; Tanaka, S.; Iwahara, H. Polarization at Pt electrodes of a fuel cell with a high temperature-type proton conductive solid electrolyte. J. Appl. Electrochem. 1985, 15, 93-7.

27. He, F.; Wu, T.; Peng, R.; Xia, C. Cathode reaction models and performance analysis of Sm0.5Sr0.5CoO3-δ-BaCe0.8Sm0.2O3-δ composite cathode for solid oxide fuel cells with proton conducting electrolyte. J. Power. Sources. 2009, 194, 263-8.

28. Duan, C.; Huang, J.; Sullivan, N.; O'Hayre, R. Proton-conducting oxides for energy conversion and storage. Appl. Phys. Rev. 2020, 7, 011314.

29. Hayd, J.; Ivers-Tiffée, E. Detailed electrochemical study on nanoscaled La0.6Sr0.4CoO3-δ SOFC thin-film cathodes in dry, humid and CO2-containing atmospheres. J. Electrochem. Soc. 2013, 160, F1197-206.

30. Zhang, Y.; Chen, Y.; Li, M.; Yan, M.; Ni, M.; Xia, C. A high-precision approach to reconstruct distribution of relaxation times from electrochemical impedance spectroscopy. J. Power. Sources. 2016, 308, 1-6.

31. Wang, X.; Ma, Z.; Zhang, T.; et al. Charge-transfer modeling and polarization DRT analysis of proton ceramics fuel cells based on mixed conductive electrolyte with the modified anode-electrolyte interface. ACS. Appl. Mater. Interfaces. 2018, 10, 35047-59.

32. Li, M.; Sun, Z.; Yang, W.; et al. Mechanism for the enhanced oxygen reduction reaction of La0.6Sr0.4Co0.2Fe0.8O3-δ by strontium carbonate. Phys. Chem. Chem. Phys. 2016, 19, 503-9.

33. Wang, J.; Li, Z.; Zang, H.; et al. BaZr0.1Fe0.9-xNixO3-δ cubic perovskite oxides for protonic ceramic fuel cell cathodes. Int. J. Hydrogen. Energy. 2022, 47, 9395-407.

34. Yu, S.; Wang, Z.; Yang, L.; et al. Enhancing the sinterability and electrical properties of BaZr0.1Ce0.7Y0.2O3-δ proton-conducting ceramic electrolyte. J. Am. Ceram. Soc. 2021, 104, 329-42.

35. Guo, R.; Li, D.; Guan, R.; et al. Sn-Dy-Cu triply doped BaZr0.1Ce0.7Y0.2O3-δ: a chemically stable and highly proton-conductive electrolyte for low-temperature solid oxide fuel cells. ACS. Sustain. Chem. Eng. 2022, 10, 5352-62.

36. Zhu, B.; Mi, Y.; Xia, C.; et al. A nanoscale perspective on solid oxide and semiconductor membrane fuel cells: materials and technology. Energy. Mater. 2022, 1, 100002.

37. Wan, S.; Shah, M. A. K. Y.; Wang, H.; Lund, P. D.; Zhu, B. Exceptionally high proton conductivity in Eu2O3 by proton-coupled electron transfer mechanism. iScience 2024, 27, 108612.

38. Wang, S.; Yan, M.; Li, Y.; Vinado, C.; Yang, J. Separating electronic and ionic conductivity in mix-conducting layered lithium transition-metal oxides. J. Power. Sources. 2018, 393, 75-82.

39. Moździerz, M.; Dąbrowa, J.; Stępień, A.; et al. Mixed ionic-electronic transport in the high-entropy (Co,Cu,Mg,Ni,Zn)1-xLixO oxides. Acta. Mater. 2021, 208, 116735.

40. Qiao, Z.; Xia, C.; Cai, Y.; et al. Electrochemical and electrical properties of doped CeO2-ZnO composite for low-temperature solid oxide fuel cell applications. J. Power. Sources. 2018, 392, 33-40.

Energy Materials
ISSN 2770-5900 (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/