REFERENCES
1. Nasani, N.; Ramasamy, D.; Antunes, I.; Perez, J.; Fagg, D. P. Electrochemical behaviour of Ni-BZO and Ni-BZY cermet anodes for protonic ceramic fuel cells (PCFCs) - A comparative study. Electrochim. Acta. 2015, 154, 387-96.
2. Duan, C.; Kee, R. J.; Zhu, H.; et al. Highly durable, coking and sulfur tolerant, fuel-flexible protonic ceramic fuel cells. Nature 2018, 557, 217-22.
3. Choi, S.; Kucharczyk, C. J.; Liang, Y.; et al. Exceptional power density and stability at intermediate temperatures in protonic ceramic fuel cells. Nat. Energy. 2018, 3, 202-10.
4. Iwahara, H.; Esaka, T.; Uchida, H.; Maeda, N. Proton conduction in sintered oxides and its application to steam electrolysis for hydrogen production. Solid. State. Ion. 1981, 3-4, 359-63.
5. Iwahara, H.; Uchida, H.; Ono, K.; Ogaki, K. Proton conduction in sintered oxides based on BaCeO3. J. Electrochem. Soc. 1988, 135, 529-33.
6. Murakami, T.; Hester, J. R.; Yashima, M. High proton conductivity in Ba5Er2Al2ZrO13, a hexagonal perovskite-related oxide with intrinsically oxygen-deficient layers. J. Am. Chem. Soc. 2020, 142, 11653-7.
7. Wei, T.; Zhang, L. A.; Chen, Y.; Yang, P.; Liu, M. Promising proton conductor for intermediate-temperature fuel cells:
8. Garcia-Barriocanal, J.; Rivera-Calzada, A.; Varela, M.; et al. Colossal ionic conductivity at interfaces of epitaxial ZrO2: Y2O3/SrTiO3 heterostructures. Science 2008, 321, 676-80.
9. Xing, Y.; Wu, Y.; Li, L.; et al. Proton shuttles in CeO2/CeO2-δ core-shell structure. ACS. Energy. Lett. 2019, 4, 2601-7.
10. Chen, G.; Sun, W.; Luo, Y.; et al. Advanced fuel cell based on new nanocrystalline structure Gd0.1Ce0.9O2 electrolyte. ACS. Appl. Mater. Interfaces. 2019, 11, 10642-50.
11. Liu, X.; Dong, W.; Tong, Y.; et al. Li effects on layer-structured oxide LixNi0.8Co0.15Al0.05O2-δ: improving cell performance via on-line reaction. Electrochim. Acta. 2019, 295, 325-32.
12. Duan, C.; Kee, R.; Zhu, H.; et al. Highly efficient reversible protonic ceramic electrochemical cells for power generation and fuel production. Nat. Energy. 2019, 4, 230-40.
13. Pei, K.; Zhou, Y.; Xu, K.; et al. Surface restructuring of a perovskite-type air electrode for reversible protonic ceramic electrochemical cells. Nat. Commun. 2022, 13, 2207.
15. Zhou, X.; Yang, J.; Wang, R.; Zhang, W.; Yun, S.; Wang, B. Advances in lithium-ion battery materials for ceramic fuel cells. Energy. Mater. 2022, 2, 200041.
16. Chen, G.; Sun, W.; Luo, Y.; et al. Investigation of layered Ni0.8Co0.15Al0.05LiO2 in electrode for low-temperature solid oxide fuel cells. Int. J. Hydrogen. Energy. 2018, 43, 417-25.
17. Yuan, K.; Yu, Y.; Lu, X.; Ji, X.; Zhu, B. A new technology for spraying advanced low-temperature (300 ~ 600 °C) solid oxide fuel cells. 2017, pp. 132-7.
18. He, Y.; Chen, G.; Zhang, X.; et al. Mechanism for major improvement in SOFC electrolyte conductivity when using lithium compounds as anode. ACS. Appl. Energy. Mater. 2020, 3, 4134-8.
19. Xia, C.; Afzal, M.; Wang, B.; et al. Mixed-conductive membrane composed of natural hematite and Ni0.8Co0.15Al0.05LiO2-δ for electrolyte layer-free fuel cell. Adv. Mater. Lett. 2017, 8, 114-21.
20. Park, H. C.; Virkar, A. V. Bimetallic (Ni-Fe) anode-supported solid oxide fuel cells with gadolinia-doped ceria electrolyte. J. Power. Sources. 2009, 186, 133-7.
21. Yu, Y.; Shah, M. Y.; Wang, H.; et al. Synergistic proton and oxygen ion transport in fluorite oxide-ion conductor. Energy. Mater. Adv. 2024, 5, 0081.
22. Zhang, Y.; Chen, Y.; Yan, M.; Chen, F. Reconstruction of relaxation time distribution from linear electrochemical impedance spectroscopy. J. Power. Sources. 2015, 283, 464-77.
23. Wang, J.; Huang, Q. A.; Li, W.; et al. Insight into the origin of pseudo peaks decoded by the distribution of relaxation times/differential capacity method for electrochemical impedance spectroscopy. J. Electroanal. Chem. 2022, 910, 116176.
24. Wang, J.; Huang, Q. A.; Wang, J.; Zhang, J. Shape factor optimisation for the distribution of relaxation times to better deconvolute electrochemical impedance spectra. J. Electroanal. Chem. 2024, 962, 118272.
26. Uchida, H.; Tanaka, S.; Iwahara, H. Polarization at Pt electrodes of a fuel cell with a high temperature-type proton conductive solid electrolyte. J. Appl. Electrochem. 1985, 15, 93-7.
27. He, F.; Wu, T.; Peng, R.; Xia, C. Cathode reaction models and performance analysis of Sm0.5Sr0.5CoO3-δ-BaCe0.8Sm0.2O3-δ composite cathode for solid oxide fuel cells with proton conducting electrolyte. J. Power. Sources. 2009, 194, 263-8.
28. Duan, C.; Huang, J.; Sullivan, N.; O'Hayre, R. Proton-conducting oxides for energy conversion and storage. Appl. Phys. Rev. 2020, 7, 011314.
29. Hayd, J.; Ivers-Tiffée, E. Detailed electrochemical study on nanoscaled La0.6Sr0.4CoO3-δ SOFC thin-film cathodes in dry, humid and CO2-containing atmospheres. J. Electrochem. Soc. 2013, 160, F1197-206.
30. Zhang, Y.; Chen, Y.; Li, M.; Yan, M.; Ni, M.; Xia, C. A high-precision approach to reconstruct distribution of relaxation times from electrochemical impedance spectroscopy. J. Power. Sources. 2016, 308, 1-6.
31. Wang, X.; Ma, Z.; Zhang, T.; et al. Charge-transfer modeling and polarization DRT analysis of proton ceramics fuel cells based on mixed conductive electrolyte with the modified anode-electrolyte interface. ACS. Appl. Mater. Interfaces. 2018, 10, 35047-59.
32. Li, M.; Sun, Z.; Yang, W.; et al. Mechanism for the enhanced oxygen reduction reaction of La0.6Sr0.4Co0.2Fe0.8O3-δ by strontium carbonate. Phys. Chem. Chem. Phys. 2016, 19, 503-9.
33. Wang, J.; Li, Z.; Zang, H.; et al. BaZr0.1Fe0.9-xNixO3-δ cubic perovskite oxides for protonic ceramic fuel cell cathodes. Int. J. Hydrogen. Energy. 2022, 47, 9395-407.
34. Yu, S.; Wang, Z.; Yang, L.; et al. Enhancing the sinterability and electrical properties of BaZr0.1Ce0.7Y0.2O3-δ proton-conducting ceramic electrolyte. J. Am. Ceram. Soc. 2021, 104, 329-42.
35. Guo, R.; Li, D.; Guan, R.; et al. Sn-Dy-Cu triply doped BaZr0.1Ce0.7Y0.2O3-δ: a chemically stable and highly proton-conductive electrolyte for low-temperature solid oxide fuel cells. ACS. Sustain. Chem. Eng. 2022, 10, 5352-62.
36. Zhu, B.; Mi, Y.; Xia, C.; et al. A nanoscale perspective on solid oxide and semiconductor membrane fuel cells: materials and technology. Energy. Mater. 2022, 1, 100002.
37. Wan, S.; Shah, M. A. K. Y.; Wang, H.; Lund, P. D.; Zhu, B. Exceptionally high proton conductivity in Eu2O3 by proton-coupled electron transfer mechanism. iScience 2024, 27, 108612.
38. Wang, S.; Yan, M.; Li, Y.; Vinado, C.; Yang, J. Separating electronic and ionic conductivity in mix-conducting layered lithium transition-metal oxides. J. Power. Sources. 2018, 393, 75-82.
39. Moździerz, M.; Dąbrowa, J.; Stępień, A.; et al. Mixed ionic-electronic transport in the high-entropy (Co,Cu,Mg,Ni,Zn)1-xLixO oxides. Acta. Mater. 2021, 208, 116735.