REFERENCES

1. Xie, M.; Cai, C.; Duan, X.; Xue, K.; Yang, H.; An, S. Review on Fe-based double perovskite cathode materials for solid oxide fuel cells. Energy. Mater. 2024, 4, 400007.

2. He, F.; Liu, S.; Wu, T.; et al. Catalytic self‐assembled air electrode for highly active and durable reversible protonic ceramic electrochemical cells. Adv. Funct. Mater. 2022, 32, 2206756.

3. Bian, W.; Wu, W.; Gao, Y.; et al. Regulation of cathode mass and charge transfer by structural 3D engineering for protonic ceramic fuel cell at 400 °C (Adv. Funct. Mater. 33/2021). Adv. Funct. Mater. 2021, 31, 2170244.

4. Duan, C.; Kee, R. J.; Zhu, H.; et al. Highly durable, coking and sulfur tolerant, fuel-flexible protonic ceramic fuel cells. Nature 2018, 557, 217-22.

5. He, F.; Hou, M.; Liu, D.; et al. Phase segregation of a composite air electrode unlocks the high performance of reversible protonic ceramic electrochemical cells. Energy. Environ. Sci. 2024, 17, 3898-907.

6. Bian, W.; Wu, W.; Wang, B.; et al. Revitalizing interface in protonic ceramic cells by acid etch. Nature 2022, 604, 479-85.

7. Hong, K.; Choi, M.; Bae, Y.; et al. Direct methane protonic ceramic fuel cells with self-assembled Ni-Rh bimetallic catalyst. Nat. Commun. 2023, 14, 7485.

8. Sengodan, S.; Choi, S.; Jun, A.; et al. Layered oxygen-deficient double perovskite as an efficient and stable anode for direct hydrocarbon solid oxide fuel cells. Nat. Mater. 2015, 14, 205-9.

9. Wang, W.; Su, C.; Wu, Y.; Ran, R.; Shao, Z. Progress in solid oxide fuel cells with nickel-based anodes operating on methane and related fuels. Chem. Rev. 2013, 113, 8104-51.

10. Hu, F.; Chen, K.; Ling, Y.; et al. Smart dual-exsolved self-assembled anode enables efficient and robust methane-fueled solid oxide fuel cells. Adv. Sci. 2024, 11, e2306845.

11. Yan, J.; Chen, H.; Li, Y. W.; Li, S.; Shao, Z. Bifunctional electrocatalysts Pr0.5Sr0.5Cr0.1Fe0.9-xNixO3-δ (x = 0.1, 0.2) for the HOR and ORR of a symmetric solid oxide fuel cell. J. Mater. Chem. A. 2023, 11, 21839-45.

12. Song, L.; Chen, D.; Pan, J.; et al. B-site super-excess design Sr2V0.4Fe0.9Mo0.7O6-δ-Ni0.4 as a Highly active and redox-stable solid oxide fuel cell anode. ACS. Appl. Mater. Interfaces. 2023, 15, 48296-303.

13. Liu, F.; Deng, H.; Wang, Z.; et al. Synergistic effects of in-situ exsolved Ni-Ru bimetallic catalyst on high-performance and durable direct-methane solid oxide fuel cells. J. Am. Chem. Soc. 2024, 146, 4704-15.

14. Liu, F.; Diercks, D.; Hussain, A. M.; et al. Nanocomposite catalyst for high-performance and durable intermediate-temperature methane-fueled metal-supported solid oxide fuel cells. ACS. Appl. Mater. Interfaces. 2022, 14, 53840-9.

15. Bahout, M.; Managutti, P. B.; Dorcet, V.; Le, Gal. La. Salle. A.; Paofai, S.; Hansen, T. C. In situ exsolution of Ni particles on the PrBaMn2O5 SOFC electrode material monitored by high temperature neutron powder diffraction under hydrogen. J. Mater. Chem. A. 2020, 8, 3590-7.

16. Song, Y.; Kim, H.; Jang, J.; et al. Pt3Ni alloy nanoparticle electro‐catalysts with unique core‐shell structure on oxygen‐deficient layered perovskite for solid oxide cells. Adv. Energy. Mater. 2023, 13, 2302384.

17. Wang, Z.; Wang, Y.; Py, B.; et al. DRTtools: freely accessible distribution of relaxation times analysis for electrochemical impedance spectroscopy. ACS. Electrochem. 2025, 1, 2680-9.

18. Wan, T.; Saccoccio, M.; Chen, C.; Ciucci, F. Influence of the discretization methods on the distribution of relaxation times deconvolution: implementing radial basis functions with DRTtools. Electrochim. Acta. 2015, 184, 483-99.

19. Yin, Y.; Dai, H.; Yu, S.; Bi, L.; Traversa, E. Tailoring cobalt‐free La0.5Sr0.5FeO3‐δ cathode with a nonmetal cation‐doping strategy for high‐performance proton‐conducting solid oxide fuel cells. SusMat 2022, 2, 607-16.

20. Guo, Y.; Wang, S.; Li, R.; et al. In situ exsolved CoFe alloy nanoparticles for stable anodic methane reforming in solid oxide electrolysis cells. Joule 2024, 8, 2016-32.

21. Yao, S.; Wang, S.; Liu, Y.; et al. High flux and stability of cationic intercalation in transition-metal oxides: unleashing the potential of Mn t2g orbital via enhanced π-donation. J. Am. Chem. Soc. 2023, 145, 26699-710.

22. Li, W.; Guan, B.; Yang, T.; et al. Layer-structured triple-conducting electrocatalyst for water-splitting in protonic ceramic electrolysis cells: Conductivities vs. activity. J. Power. Sources. 2021, 495, 229764.

23. Wang, N.; Tang, C.; Du, L.; et al. Advanced cathode materials for protonic ceramic fuel cells: recent progress and future perspectives (Adv. Energy Mater. 34/2022). Adv. Energy. Mater. 2022, 12, 2270145.

24. Ding, H.; Wu, W.; Jiang, C.; et al. Self-sustainable protonic ceramic electrochemical cells using a triple conducting electrode for hydrogen and power production. Nat. Commun. 2020, 11, 1907.

25. Zhou, C.; Wang, X.; Liu, D.; et al. New strategy for boosting cathodic performance of protonic ceramic fuel cells through incorporating a superior hydronation second phase. Energy. Environ. Mater. 2024, 7, e12660.

26. Shao, S.; Li, X.; Cai, Y.; et al. Interfacial metal ion self-rearrangement: a new strategy for endowing hybrid cathode with enhanced performance for protonic ceramic fuel cells. Chem. Eng. J. 2023, 460, 141698.

27. Yao, X.; Cheng, Q.; Bai, X.; et al. Enlarging the three-phase boundary to raise CO2/CH4 conversions on exsolved Ni-Fe alloy perovskite catalysts by minimal Rh doping. ACS. Catal. 2024, 14, 5639-53.

28. Bang, S.; Kim, J. G.; Wen, Y.; Lee, J.; Lee, W. Equalized oxygen partial pressure for carbon coking-free dry reforming of methane in intermediate temperature solid oxide fuel cells. Chem. Eng. J. 2025, 514, 163163.

29. Liu, Y.; Luo, J.; Li, C.; et al. BaCe0.8Fe0.1Ni0.1O3-δ-impregnated Ni-GDC by phase-inversion as an anode of solid oxide fuel cells with on-cell dry methane reforming. J. Adv. Ceram. 2024, 13, 834-41.

30. Wang, H.; Cui, G.; Lu, H.; et al. Facilitating the dry reforming of methane with interfacial synergistic catalysis in an Ir@CeO2-x catalyst. Nat. Commun. 2024, 15, 3765.

31. Zhang, X.; Zhang, Z.; Wang, Q.; et al. Enhanced photothermal methane dry reforming through electronic interactions between nickel and yttrium. Nanoscale. Horiz. 2025, 10, 905-14.

32. Li, Y.; Yao, L.; Li, J.; et al. GaN nanowire-supported NiO for low-temperature and durable dry reforming of methane toward syngas. Appl. Catal. B. Environ. Energy. 2025, 366, 125051.

33. Chen, J.; Liu, Y.; Chen, Z.; et al. Highly efficient transformation of tar model compounds into hydrogen by a Ni-Co alloy nanocatalyst during tar steam reforming. Environ. Sci. Technol. 2024, 58, 3540-51.

34. Han, F.; Wang, Z.; Zhang, S.; Li, C.; Barnett, S. A. Highly efficient perovskite-based fuel electrodes for solid oxide electrochemical cells via in-situ nanoparticle exsolution and electron conduction enhancement. Appl. Catal. B. Environ. Energy. 2025, 361, 124676.

35. Wang, S.; Ye, X.; Zhou, Y. All symmetrical metal supported solid oxide fuel cells. J. Inorg. Mater. 2016, 31, 769.

36. Gu, Y.; Zhang, Y.; Zheng, Y.; Chen, H.; Ge, L.; Guo, L. PrBaMn2O5+δ with praseodymium oxide nano-catalyst as electrode for symmetrical solid oxide fuel cells. Appl. Catal. B. Environ. 2019, 257, 117868.

37. Wang, S.; Zheng, H.; Wu, Y.; et al. Characterization of Pr0.5A0.5Fe0.9W0.1O3-δ (A = Ca, Sr and Ba) as symmetric electrodes for solid oxide fuel cells. Sustain. Energy. Fuels. 2022, 6, 4741-8.

38. Li, X.; Li, R.; Tian, Y.; et al. Tuning Pr0.5Ba0.5FeO3-δ cathode to enhanced stability and activity via Ca-doping for symmetrical solid oxide fuel cells. Int. J. Hydrogen. Energy. 2024, 60, 650-6.

39. Zhang, W.; Meng, J.; Zhang, X.; Zhang, L.; Liu, X.; Meng, J. Co-incorporating enhancement on oxygen vacancy formation energy and electrochemical property of Sr2Co1+xMo1-xO6-δ cathode for intermediate-temperature solid oxide fuel cell. Solid. State. Ion. 2018, 316, 20-8.

40. Zhou, J.; Shin, T.; Ni, C.; et al. In situ growth of nanoparticles in layered perovskite La0.8Sr1.2Fe0.9Co0.1O4-δ as an active and stable electrode for symmetrical solid oxide fuel cells. Chem. Mater. 2016, 28, 2981-93.

41. Fan, W.; Sun, Z.; Bai, Y.; Wu, K.; Cheng, Y. Highly stable and efficient perovskite ferrite electrode for symmetrical solid oxide fuel cells. ACS. Appl. Mater. Interfaces. 2019, 11, 23168-79.

42. Yu, Y.; Yu, L.; Shao, K.; et al. BaZr0.1Co0.4Fe0.4Y0.1O3-SDC composite as quasi-symmetrical electrode for proton conducting solid oxide fuel cells. Ceram. Int. 2020, 46, 11811-8.

43. Escudero, M.; Aguadero, A.; Alonso, J.; Daza, L. A kinetic study of oxygen reduction reaction on La2NiO4 cathodes by means of impedance spectroscopy. J. Electroanal. Chem. 2007, 611, 107-16.

44. Liu, X.; Huang, L.; Xi, X.; et al. Regulating the d-p orbital hybridization in BaCo0.4Fe0.4Zr0.1Y0.1O3-δ via Cu doping for high-performance solid oxide fuel cells cathode. Chem. Eng. J. 2025, 513, 162958.

45. Cao, X.; Ke, L.; Zhao, K.; Yan, X.; Wu, X.; Yan, N. Surface decomposition of doped PrBaMn2O5+δ induced by in situ nanoparticle exsolution: quantitative characterization and catalytic effect in methane dry reforming reaction. Chem. Mater. 2022, 34, 10484-94.

46. Li, J.; Zhou, X.; Wu, C.; et al. Self-stabilized hybrid cathode for solid oxide fuel cell: a-site deficient perovskite coating as solid solution for strontium diffusion. Chem. Eng. J. 2022, 438, 135446.

Energy Materials
ISSN 2770-5900 (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/