REFERENCES
1. Mao, Q.; Wang, W.; Deng, K.; et al. Low-content Pt-triggered the optimized d-band center of Rh metallene for energy-saving hydrogen production coupled with hydrazine degradation. J. Energy. Chem. 2023, 85, 58-66.
2. Zhu, L.; Lin, H.; Li, Y.; et al. A rhodium/silicon co-electrocatalyst design concept to surpass platinum hydrogen evolution activity at high overpotentials. Nat. Commun. 2016, 7, 12272.
3. Fan, J.; Cui, X.; Yu, S.; et al. Interstitial hydrogen atom modulation to boost hydrogen evolution in Pd-based alloy nanoparticles. ACS. Nano. 2019, 13, 12987-95.
4. Yan, Z.; Gong, J.; Sun, H.; et al. Heterojunction-doping synergy in strontium palladium-ruthenium oxide catalysts for efficient oxygen evolution. Nano. Res. 2025.
5. Prabhu, P.; Do, V. H.; Peng, C. K.; et al. Oxygen-bridged stabilization of single atomic W on Rh metallenes for robust and efficient pH-universal hydrogen evolution. ACS. Nano. 2023, 17, 10733-47.
6. Zheng, Y.; Zhang, B.; Ma, T.; et al. Nitrided rhodium nanoclusters with optimized water bonding and splitting effects for pH-universal H2-production. Small 2023, 20, 2307405.
7. Xing, M.; Zhu, S.; Zeng, X.; Wang, S.; Liu, Z.; Cao, D. Amorphous/Crystalline Rh(OH)3/CoP heterostructure with hydrophilicity/aerophobicity feature for all-pH hydrogen evolution reactions. Adv. Energy. Mater. 2023, 13, 2302376.
8. Xu, X.; Zhong, Y.; Wajrak, M.; Bhatelia, T.; Jiang, S. P.; Shao, Z. Grain boundary engineering: an emerging pathway toward efficient electrocatalysis. InfoMat 2024, 6, e12608.
9. Jamadar, A. S.; Sutar, R.; Patil, S.; Khandekar, R.; Yadav, J. B. Progress in metal oxide-based electrocatalysts for sustainable water splitting. Mater. Rep. Energy. 2024, 4, 100283.
10. Zhang, X.; Song, J.; Sun, T.; et al. Constructing nanoneedle arrays of heterostructured RuO2-Co3O4 with tip-effect-induced enrichment of reactants for enhanced water oxidation. Chem. Commun. 2025, 61, 8723-6.
11. Wang, Y.; Guo, W.; Zhu, Z.; et al. Interfacial boron modification on mesoporous octahedral rhodium shell and its enhanced electrocatalysis for water splitting and oxygen reduction. Chem. Eng. J. 2022, 435, 134982.
12. Guo, Y.; Yang, X.; Liu, X.; Tong, X.; Yang, N. Coupling methanol oxidation with hydrogen evolution on bifunctional co-doped Rh electrocatalyst for efficient hydrogen generation. Adv. Funct. Mater. 2022, 33, 2209134.
13. Guo, Y.; Hou, B.; Cui, X.; Liu, X.; Tong, X.; Yang, N. Pt atomic layers boosted hydrogen evolution reaction in nonacidic media. Adv. Energy. Mater. 2022, 12, 2201548.
14. Wang, K.; Huang, B.; Lin, F.; et al. Wrinkled Rh2P nanosheets as superior pH-universal electrocatalysts for hydrogen evolution catalysis. Adv. Energy. Mater. 2018, 8, 1801891.
15. Jiang, Y.; Leng, J.; Zhang, S.; et al. Modulating water splitting kinetics via charge transfer and interfacial hydrogen spillover effect for robust hydrogen evolution catalysis in alkaline media. Adv. Sci. 2023, 10, e2302358.
16. Li, Q.; Zhang, H.; Yang, D.; et al. Cationic defect-enabled charge transfer in rhodium clusters via Rh-O bonding for enhanced alkaline hydrogen evolution. Nano. Res. 2025, 18, 94907391.
17. Ding, R.; Yan, T.; Wang, Y.; Long, Y.; Fan, G. Carbon nanopore and anchoring site-assisted general construction of encapsulated metal (Rh, Ru, Ir) nanoclusters for highly efficient hydrogen evolution in pH-universal electrolytes and natural seawater. Green. Chem. 2021, 23, 4551-9.
18. Li, F.; Yao, C.; Jeon, J. P.; et al. Rhodium and carbon sites with strong d-p orbital interaction for efficient bifunctional catalysis. ACS. Nano. 2023, 17, 24282-9.
19. Tareq, F. K.; Lee, H.; Shin, C.; Kojo, S. I.; Yu, J. Honeycomb-structured S and N-codoped highly graphitized carbon as a catalyst support for Rh nanoparticles: a new benchmark electrocatalyst for hydrogen evolution reaction. Electrochim. Acta. 2024, 498, 144627.
20. Liu, T.; Chen, C.; Pu, Z.; et al. Joule heating to grain-boundary-rich RuP2 for efficient electrocatalytic hydrogen evolution in a wide pH range. Energy. Mater. 2025, 5, 500058.
21. Obiang Nsang, G. E.; Ullah, B.; Hua, S.; et al. NiS nanoparticle-MoS2 nanosheet core-shell spheres: PVP-assisted synthesis and efficient electrocatalyst for hydrogen evolution reaction. Energy. Mater. 2025, 5, 500047.
22. Liu, D.; Xu, G.; Yang, H.; Wang, H.; Xia, B. Y. Rational design of transition metal phosphide-based electrocatalysts for hydrogen evolution. Adv. Funct. Mater. 2022, 33, 2208358.
23. Wang, H.; Ren, J.; Wang, L.; et al. Synergistically enhanced activity and stability of bifunctional nickel phosphide/sulfide heterointerface electrodes for direct alkaline seawater electrolysis. J. Energy. Chem. 2022, 75, 66-73.
24. Lu, Y.; Yue, C.; Li, Y.; et al. Atomically dispersed Ni on Mo2C embedded in N, P co-doped carbon derived from polyoxometalate supramolecule for high-efficiency hydrogen evolution electrocatalysis. Appl. Catal. B. Environ. 2021, 296, 120336.
25. Cao, Y. Roadmap and direction toward high-performance MoS2 hydrogen evolution catalysts. ACS. Nano. 2021, 15, 11014-39.
26. Vij, V.; Sultan, S.; Harzandi, A. M.; et al. Nickel-based electrocatalysts for energy-related applications: oxygen reduction, oxygen evolution, and hydrogen evolution reactions. ACS. Catal. 2017, 7, 7196-225.
27. Cheng, Y.; Lu, S.; Liao, F.; Liu, L.; Li, Y.; Shao, M. Rh - MoS2 nanocomposite catalysts with Pt-like activity for hydrogen evolution reaction. Adv. Funct. Mater. 2017, 27, 1700359.
28. Nguyen, N.; Nguyen, V.; Shin, S.; Choi, H. NiRh nanosponges with highly efficient electrocatalytic performance for hydrogen evolution reaction. J. Alloys. Compd. 2019, 789, 163-73.
29. Ehsan, M. A.; Aftab, F.; Younas, M.; Mansoor, M. A.; Ahmed, S. Graphite sheet-supported bimetallic RhNi thin film alloys for enhanced and durable hydrogen evolution in acidic environments. Int. J. Hydrogen. Energy. 2024, 69, 411-20.
30. Xu, X.; Chen, H. C.; Li, L.; et al. Leveraging metal nodes in metal-organic frameworks for advanced anodic hydrazine oxidation assisted seawater splitting. ACS. Nano. 2023, 17, 10906-17.
31. Zhai, Z.; Wang, Y.; Si, C.; et al. Self-templating synthesis and structural regulation of nanoporous rhodium-nickel alloy nanowires efficiently catalyzing hydrogen evolution reaction in both acidic and alkaline electrolytes. Nano Res. 2022, 16, 2026-34.
32. Yu, Q.; Fu, Y.; Zhao, J.; et al. Boron doping activate strong metal-support interaction for electrocatalytic hydrogen evolution reaction in full pH range. Appl. Catal. B. Environ. 2023, 324, 122297.
33. Lin, G.; Zhang, Z.; Ju, Q.; et al. Bottom-up evolution of perovskite clusters into high-activity rhodium nanoparticles toward alkaline hydrogen evolution. Nat. Commun. 2023, 14, 280.
34. Chen, X.; Li, W.; Wang, C.; Lu, X. Wet chemical synthesis of rhodium nanoparticles anchored on cobalt/nitrogen-doped carbon nanofibers for high-performance alkaline and acidic hydrogen evolution. J. Colloid. Interface. Sci. 2023, 650, 304-12.
35. Wang, Q.; Ming, M.; Niu, S.; Zhang, Y.; Fan, G.; Hu, J. S. Scalable solid-state synthesis of highly dispersed uncapped metal (Rh, Ru, Ir) nanoparticles for efficient hydrogen evolution. Adv. Energy. Mater. 2018, 8, 1801698.
36. Zhao, Y.; Xing, S.; Meng, X.; et al. Ultrathin Rh nanosheets as a highly efficient bifunctional electrocatalyst for isopropanol-assisted overall water splitting. Nanoscale 2019, 11, 9319-26.
37. Gao, Y.; Xue, Y.; Qi, L.; et al. Rhodium nanocrystals on porous graphdiyne for electrocatalytic hydrogen evolution from saline water. Nat. Commun. 2022, 13, 5227.
38. Ming, M.; Zhang, Y.; He, C.; et al. Room-temperature sustainable synthesis of selected platinum group metal (PGM = Ir, Rh, and Ru) nanocatalysts well-dispersed on porous carbon for efficient hydrogen evolution and oxidation. Small 2019, 15, e1903057.
39. Liu, Y.; Hu, X.; Huang, B.; Xie, Z. Surface engineering of Rh catalysts with N/S-codoped carbon nanosheets toward high-performance hydrogen evolution from seawater. ACS. Sustain. Chem. Eng. 2019, 7, 18835-43.
40. Logeshwaran, N.; Kim, G.; Thangavel, P.; et al. Synergistic configuration of binary rhodium single atoms in carbon nanofibers for high-performance alkaline water electrolyzer. Adv. Sci. 2025, 12, e2413176.
41. Wang, W.; Geng, W.; Zhang, L.; et al. Molybdenum oxycarbide supported Rh-clusters with modulated interstitial C-O microenvironments for promoting hydrogen evolution. Small 2023, 19, e2206808.
42. Kumar Manna, B.; Samanta, R.; Kumar Trivedi, R.; Chakraborty, B.; Barman, S. Hydrogen spillover inspired bifunctional platinum/rhodium oxide-nitrogen-doped carbon composite for enhanced hydrogen evolution and oxidation reactions in base. J. Colloid. Interface. Sci. 2024, 670, 258-71.
43. Sun, B.; Zhong, W.; Liu, H.; Ai, X.; Han, S.; Chen, Y. Controlling rhodium-based nanomaterials for high-efficiency energy-related electrocatalysis. EnergyChem 2025, 7, 100148.
44. Li, Y.; Liu, X.; Xu, J.; Chen, S. Ruthenium-based electrocatalysts for hydrogen evolution reaction: from nanoparticles to single atoms. Small 2024, 20, e2402846.
45. Jia, N.; Liu, Y.; Wang, L.; et al. 0.2 V electrolysis voltage-driven alkaline hydrogen production with nitrogen-doped carbon nanobowl-supported ultrafine Rh nanoparticles of 1.4 nm. ACS. Appl. Mater. Interfaces. 2019, 11, 35039-49.
46. Wang, C.; Zhang, Q.; Yan, B.; et al. Facet engineering of advanced electrocatalysts toward hydrogen/oxygen evolution reactions. Nanomicro. Lett. 2023, 15, 52.
47. Luo, H.; Li, L.; Lin, F.; et al. Sub-2 nm microstrained high-entropy-alloy nanoparticles boost hydrogen electrocatalysis. Adv. Mater. 2024, 36, e2403674.
48. Guo, F.; Macdonald, T. J.; Sobrido, A. J.; Liu, L.; Feng, J.; He, G. Recent advances in ultralow-Pt-loading electrocatalysts for the efficient hydrogen evolution. Adv. Sci. 2023, 10, e2301098.
49. Zhai, W.; Ma, Y.; Chen, D.; Ho, J. C.; Dai, Z.; Qu, Y. Recent progress on the long-term stability of hydrogen evolution reaction electrocatalysts. InfoMat 2022, 4, e12357.
50. Zhou, X.; Hensen, E. J.; van Santen, R. A.; Li, C. DFT simulations of water adsorption and activation on low-index α-Ga2O3 surfaces. Chemistry 2014, 20, 6915-26.
51. Dubouis, N.; Grimaud, A. The hydrogen evolution reaction: from material to interfacial descriptors. Chem. Sci. 2019, 10, 9165-81.
52. Jung, O.; Jackson, M. N.; Bisbey, R. P.; Kogan, N. E.; Surendranath, Y. Innocent buffers reveal the intrinsic pH- and coverage-dependent kinetics of the hydrogen evolution reaction on noble metals. Joule 2022, 6, 476-93.
53. Zheng, X.; Shi, X.; Ning, H.; et al. Tailoring a local acid-like microenvironment for efficient neutral hydrogen evolution. Nat. Commun. 2023, 14, 4209.
54. Andrew, A. A.; Abild-Pedersen, F.; Studt, F.; Rossmeisl, J.; Norskov, J. K. How copper catalyzes the electroreduction of carbon dioxide into hydrocarbon fuels. Energy. Environ. Sci. 2010, 3, 1311-15.
55. Bhunia, K.; Chandra, M.; Kumar Sharma, S.; Pradhan, D.; Kim, S. A critical review on transition metal phosphide based catalyst for electrochemical hydrogen evolution reaction: Gibbs free energy, composition, stability, and true identity of active site. Coord. Chem. Rev. 2023, 478, 214956.
56. Nørskov, J. K.; Bligaard, T.; Logadottir, A.; et al. Trends in the exchange current for hydrogen evolution. J. Electrochem. Soc. 2005, 152, J23.
57. Megha; Sen, P. From the single-atom limit to the mixed-metal phase: finding the optimum condition for activating the basal plane of a FePSe3 monolayer towards HER. Phys. Chem. Chem. Phys. 2023, 25, 17269-80.
58. Zhou, Y.; Song, E.; Chen, W.; et al. Dual-metal interbonding as the chemical facilitator for single-atom dispersions. Adv. Mater. 2020, 32, e2003484.
59. Sultan, S.; Diorizky, M. H.; Ha, M.; et al. Modulation of Cu and Rh single-atoms and nanoparticles for high-performance hydrogen evolution activity in acidic media. J. Mater. Chem. A. 2021, 9, 10326-34.
60. Nguyen, D. C.; Doan, T. L. L.; Prabhakaran, S.; Kim, D. H.; Kim, N. H.; Lee, J. H. Rh single atoms/clusters confined in metal sulfide/oxide nanotubes as advanced multifunctional catalysts for green and energy-saving hydrogen productions. Appl. Catal. B. Environ. 2022, 313, 121430.
61. Fu, X.; Cheng, D.; Wan, C.; et al. Bifunctional ultrathin RhRu0.5-alloy nanowire electrocatalysts for hydrazine-assisted water splitting. Adv. Mater. 2023, 35, e2301533.
62. Mu, X.; Gu, J.; Feng, F.; et al. RuRh bimetallene nanoring as high-efficiency pH-universal catalyst for hydrogen evolution reaction. Adv. Sci. 2021, 8, 2002341.
63. Sun, F.; Tang, Q.; Jiang, D. Theoretical advances in understanding and designing the active sites for hydrogen evolution reaction. ACS. Catal. 2022, 12, 8404-33.
64. Abd Elhamid, M. H.; Ateya, B. G.; Weil, K. G.; Pickering, H. W. Calculation of the hydrogen surface coverage and rate constants of the hydrogen evolution reaction from polarization data. J. Electrochem. Soc. 2000, 147, 2148.
65. Shi, Y.; Zhou, Y.; Yang, D. R.; et al. Energy level engineering of MoS2 by transition-metal doping for accelerating hydrogen evolution reaction. J. Am. Chem. Soc. 2017, 139, 15479-85.
66. Zhang, L.; Wang, Z.; Zhang, J.; et al. High activity and stability in Ni2P/(Co,Ni)OOH heterointerface with a multiple-hierarchy structure for alkaline hydrogen evolution reaction. Nano. Res. 2023, 16, 6552-9.
67. Yan, Z.; Liu, Z.; Zhou, G.; et al. Short-path hydrogen spillover on CeO2-supported PtPd nanoclusters for efficient hydrogen evolution in acidic media. Angew. Chem. Int. Ed. 2025, 64, e202501964.
68. Zhang, L.; Shi, X.; Xu, A.; Zhong, W.; Zhang, J.; Shen, S. Novel CoP/CoMoP2 heterojunction with nanoporous structure as an efficient electrocatalyst for hydrogen evolution. Nano. Res. 2023, 17, 3693-9.
69. Lu, J.; Hou, X.; Xiao, B.; Xu, X.; Mi, J.; Zhang, P. Computational screening of transition-metal doped boron nanotubes as efficient electrocatalysts for water splitting. RSC. Adv. 2022, 12, 6841-7.
70. Fang, C.; Liu, D.; Zhang, Q.; Liu, G.; Shi, C.; Xu, J. In pursuit of a bifunctional designing toward highly efficient overall water splitting in a hydrogen-functionalized two-dimensional covalent organic framework via single transition metal mapping. Int. J. Hydrogen. Energy. 2024, 62, 48-61.
71. Hammer, B.; Nørskov, J. Electronic factors determining the reactivity of metal surfaces. Surf. Sci. 1995, 343, 211-20.
72. Shen, S.; Wang, Z.; Lin, Z.; et al. Crystalline-amorphous interfaces coupling of CoSe2/CoP with optimized d-band center and boosted electrocatalytic hydrogen evolution. Adv. Mater. 2022, 34, e2110631.
73. Doan, T. L. L.; Nguyen, D. C.; Bacirhonde, P. M.; et al. Atomic dispersion of Rh on interconnected Mo2C nanosheet network intimately embedded in 3D NixMoOy nanorod arrays for pH-universal hydrogen evolution. Energy. Environ. Mater. 2023, 6, e12407.
74. Kundu, M. K.; Mishra, R.; Bhowmik, T.; Barman, S. Rhodium metal-rhodium oxide (Rh-Rh2O3) nanostructures with Pt-like or better activity towards hydrogen evolution and oxidation reactions (HER, HOR) in acid and base: correlating its HOR/HER activity with hydrogen binding energy and oxophilicity of the catalyst. J. Mater. Chem. A. 2018, 6, 23531-41.
75. Chen, K.; Wang, Z.; Wang, L.; et al. Boron nanosheet-supported Rh catalysts for hydrogen evolution: a new territory for the strong metal-support interaction effect. Nanomicro. Lett. 2021, 13, 138.
76. Mao, Q.; Deng, K.; Yu, H.; et al. In situ reconstruction of partially hydroxylated porous Rh metallene for ethylene glycol-assisted seawater splitting. Adv. Funct. Mater. 2022, 32, 2201081.
77. An, Q.; Bo, S.; Jiang, J.; et al. Atomic-level interface engineering for boosting oxygen electrocatalysis performance of single-atom catalysts: from metal active center to the first coordination sphere. Adv. Sci. 2023, 10, e2205031.
78. Guo, W.; Dun, C.; Yu, C.; et al. Mismatching integration-enabled strains and defects engineering in LDH microstructure for high-rate and long-life charge storage. Nat. Commun. 2022, 13, 1409.
79. Zhu, Y. P.; Guo, C.; Zheng, Y.; Qiao, S. Z. Surface and interface engineering of noble-metal-free electrocatalysts for efficient energy conversion processes. Acc. Chem. Res. 2017, 50, 915-23.
80. Calle-Vallejo, F.; Bandarenka, A. S. Enabling generalized coordination numbers to describe strain effects. ChemSusChem 2018, 11, 1824-8.
81. Du, J.; Yan, Y.; Li, X.; et al. A mechanism-guided descriptor for the hydrogen evolution reaction in 2D ordered double transition-metal carbide MXenes. Chem. Sci. 2025, 16, 9424-35.
82. Calle-Vallejo, F. The ABC of generalized coordination numbers and their use as a descriptor in electrocatalysis. Adv. Sci. 2023, 10, e2207644.
83. Ding, R.; Chen, J.; Chen, Y.; Liu, J.; Bando, Y.; Wang, X. Unlocking the potential: machine learning applications in electrocatalyst design for electrochemical hydrogen energy transformation. Chem. Soc. Rev. 2024, 53, 11390-461.
84. Lu, Z.; Yadav, S.; Singh, C. V. Predicting aggregation energy for single atom bimetallic catalysts on clean and O* adsorbed surfaces through machine learning models. Catal. Sci. Technol. 2020, 10, 86-98.
85. Xu, P.; Ji, X.; Li, M.; Lu, W. Small data machine learning in materials science. NPJ. Comput. Mater. 2023, 9, 42.
86. Hoffmann, N.; Schmidt, J.; Botti, S.; Marques, M. A. L. Transfer learning on large datasets for the accurate prediction of material properties. Digital. Discovery. 2023, 2, 1368-79.
87. Cai, J.; Liao, X.; Li, P.; et al. Penta-twinned Rh@Pt core-shell nanobranches with engineered shell thickness for reversible and active hydrogen redox electrocatalysis. Chem. Eng. J. 2022, 429, 132414.
88. Bian, T.; Xiao, B.; Sun, B.; et al. Local epitaxial growth of Au-Rh core-shell star-shaped decahedra: a case for studying electronic and ensemble effects in hydrogen evolution reaction. Appl. Catal. B. Environ. 2020, 263, 118255.
89. Huang, X.; Wu, Z.; Zhang, B.; et al. Formation of disordered high-entropy-alloy nanoparticles for highly efficient hydrogen electrocatalysis. Small 2024, 20, e2311631.
90. Golubović, J.; Rakočević, L.; Latas, N.; Varničić, M.; Rajić, V.; Štrbac, S. Enhanced hydrogen evolution catalysis on Rh nanoparticles with low loading on graphene nanoplatelets. Appl. Surf. Sci. 2024, 672, 160805.
91. Cao, D.; Xu, H.; Cheng, D. Construction of defect-rich RhCu nanotubes with highly active Rh3Cu1 alloy phase for overall water splitting in all pH values. Adv. Energy. Mater. 2020, 10, 1903038.
92. Volpato, G. A.; Muneton Arboleda, D.; Brandiele, R.; et al. Clean rhodium nanoparticles prepared by laser ablation in liquid for high performance electrocatalysis of the hydrogen evolution reaction. Nanoscale. Adv. 2019, 1, 4296-300.
93. Fu, X.; Zhao, Z.; Wan, C.; et al. Ultrathin wavy Rh nanowires as highly effective electrocatalysts for methanol oxidation reaction with ultrahigh ECSA. Nano. Res. 2018, 12, 211-5.
94. Zheng, L.; Xu, L.; Gu, P.; Chen, Y. Lattice engineering of noble metal-based nanomaterials via metal-nonmetal interactions for catalytic applications. Nanoscale 2024, 16, 7841-61.
95. Li, Y.; Peng, C. K.; Sun, Y.; et al. Operando elucidation of hydrogen production mechanisms on sub-nanometric high-entropy metallenes. Nat. Commun. 2024, 15, 10222.
96. Hu, Z.; Chen, K.; Zhu, Y.; Liu, B.; Shen, J. Synergistic effects of PtRhNiFeCu high entropy alloy nanocatalyst for hydrogen evolution and oxygen reduction reactions. Small 2024, 20, e2309819.
97. Li, X.; Huang, Y.; Chen, Z.; et al. Novel PtNi nanoflowers regulated by a third element (Rh, Ru, Pd) as efficient multifunctional electrocatalysts for ORR, MOR and HER. Chem. Eng. J. 2023, 454, 140131.
98. Jiang, B.; Huang, A.; Wang, T.; et al. Rhodium/graphitic-carbon-nitride composite electrocatalyst facilitates efficient hydrogen evolution in acidic and alkaline electrolytes. J. Colloid. Interface. Sci. 2020, 571, 30-7.
99. Jia, M.; Jiang, G.; Chen, H.; et al. Recent developments on processes for recovery of rhodium metal from spent catalysts. Catalysts 2022, 12, 1415.
100. Dong, H.; Zhao, Z.; Wu, Z.; et al. Metal-oxo cluster mediated atomic Rh with high accessibility for efficient hydrogen evolution. Small 2023, 19, e2207527.
101. Yan, K.; Wei, T.; Ren, H.; et al. Asymmetric exchange interaction induces highly efficient alkaline hydrogen evolution in RhFe bimetallene. Small 2022, 18, e2204456.
102. Zhang, B.; Zhu, C.; Wu, Z.; et al. Integrating Rh species with NiFe-layered double hydroxide for overall water splitting. Nano. Lett. 2020, 20, 136-44.
103. Liu, Y.; Ding, J.; Li, F.; et al. Modulating hydrogen adsorption via charge transfer at the semiconductor-metal heterointerface for highly efficient hydrogen evolution catalysis. Adv. Mater. 2023, 35, e2207114.
104. Tran, N. Q.; Le, B. T. N.; Le, T. N.; et al. Coupling amorphous Ni hydroxide nanoparticles with single-atom Rh on Cu nanowire arrays for highly efficient alkaline seawater electrolysis. J. Phys. Chem. Lett. 2022, 13, 8192-9.
105. Guan, J.; Wen, X.; Zhang, Q.; Duan, Z. Atomic rhodium catalysts for hydrogen evolution and oxygen reduction reactions. Carbon 2020, 164, 121-8.
106. Cao, C.; Xu, Q.; Zhu, Q. L. Ultrathin two-dimensional metallenes for heterogeneous catalysis. Chem. Catal. 2022, 2, 693-723.
107. Xie, M.; Tang, S.; Zhang, B.; Yu, G. Metallene-related materials for electrocatalysis and energy conversion. Mater. Horiz. 2023, 10, 407-31.
108. Wang, Z.; Yang, G.; Tian, P.; et al. Heterointerface engineering of Rh/Pd metallene for hydrazine oxidation-assisted energy-saving hydrogen production. J. Mater. Chem. A. 2023, 11, 10222-7.
109. Deng, K.; Mao, Q.; Wang, W.; et al. Defect-rich low-crystalline Rh metallene for efficient chlorine-free H2 production by hydrazine-assisted seawater splitting. Appl. Catal. B. Environ. 2022, 310, 121338.
110. Piotrowski, M. J.; Piquini, P.; Cândido, L.; Da Silva, J. L. The role of electron localization in the atomic structure of transition-metal 13-atom clusters: the example of Co13, Rh13, and Hf13. Phys. Chem. Chem. Phys. 2011, 13, 17242-8.
111. Luo, G.; Song, M.; Zhang, Q.; et al. Advances of synergistic electrocatalysis between single atoms and nanoparticles/clusters. Nano-Micro. Lett. 2024, 16, 241.
112. Lin, S.; Li, D.; Zhang, D.; et al. Privileged metal cluster complexes. Chem. Sci. 2025, 16, 11619-25.
113. Guo, Y.; Wang, Y.; Huang, Z.; Tong, X.; Yang, N. Size effect of Rhodium nanoparticles supported on carbon black on the performance of hydrogen evolution reaction. Carbon 2022, 194, 303-9.
114. Cao, K. W.; Sun, H. Y.; Xue, Q.; et al. Functionalized ultrafine rhodium nanoparticles on graphene aerogels for the hydrogen evolution reaction. ChemElectroChem 2021, 8, 1759-65.
115. Zhang, Y.; Grass, M. E.; Habas, S. E.; et al. One-step polyol synthesis and langmuir-blodgett monolayer formation of size-tunable monodisperse rhodium nanocrystals with catalytically active (111) surface structures. J. Phys. Chem. C. 2007, 111, 12243-53.
116. Sookhakian, M.; Siburian, R.; Tong, G. B.; Mat Teridi, M. A.; Mahmoud, E.; Alias, Y. Ratio design of bimetallic Pd-Rh nanoparticles on MoS2 nanosheets: excellent electrocatalysts for hydrogen evolution reaction. Appl. Organomet. Chem. 2024, 38, e7541.
117. Bonifacio, R. M.; Mena, M. G. Activity of electrodeposited rhodium in acidic and basic water electrolysis. Int. J. Hydrogen. Energy. 2024, 52, 364-77.
118. Biswas, R.; Dastider, S. G.; Ahmed, I.; Biswas, S.; Mondal, K.; Haldar, K. K. Bio-assisted synthesis of Au/Rh nanostructure electrocatalysts for hydrogen evolution and methanol oxidation reactions: composition matters. Energy. Fuels. 2023, 37, 13231-40.
119. Guo, L.; Xu, W.; Sun, Z.; et al. Highly dispersed Rh prepared by the in-situ etching-growth strategy for energy-saving hydrogen evolution. J. Taiwan. Inst. Chem. Eng. 2022, 132, 104118.
120. Hwang, G. S.; Shin, W.; Yim, G.; et al. Morphology-controlled silver-containing rhodium nanoparticles for the hydrogen evolution reaction. J. Electrochem. Soc. 2022, 169, 044517.
121. Lu, R.; Sam, D. K.; Gong, S.; et al. Silk fibroin derived porous carbon aerogels confined hyperdispersed Rh nanoparticles to achieve electrocatalytic hydrogen evolution under high current density. Diamond. Relat. Mater. 2022, 128, 109292.
122. Kim, J.; Kani, K.; Kim, J.; et al. Mesoporous Rh nanoparticles as efficient electrocatalysts for hydrogen evolution reaction. J. Ind. Eng. Chem. 2021, 96, 371-5.
123. Mao, Q.; Jiao, S.; Ren, K.; et al. Transition metal and phosphorus co-doping induced lattice strain in mesoporous Rh-based nanospheres for pH-universal hydrogen evolution electrocatalysis. Chem. Eng. J. 2021, 426, 131227.
124. Kumaravel, S.; Karthick, K.; Sankar, S. S.; Karmakar, A.; Kundu, S. Shape-selective rhodium nano-huddles on DNA for high efficiency hydrogen evolution reaction in acidic medium. J. Mater. Chem. C. 2021, 9, 1709-20.
125. Hu, M.; Chen, Q.; Ding, R.; Wu, J.; Wang, Y.; Zhang, Y.; Fan, G. Spatially localized fabrication of uniform Rh nanoclusters on nanosheet-assembled hierarchical carbon architectures as excellent electrocatalysts for boosting alkaline hydrogen evolution. Int. J. Hydrogen. Energy. 2020, 45, 8118-25.
126. Akbayrak, M.; Önal, A. M. High durability and electrocatalytic activity toward hydrogen evolution reaction with ultralow rhodium loading on Titania. J. Electrochem. Soc. 2020, 167, 156501.
127. Liu, M.; Hof, F.; Moro, M.; Valenti, G.; Paolucci, F.; Pénicaud, A. Carbon supported noble metal nanoparticles as efficient catalysts for electrochemical water splitting. Nanoscale 2020, 12, 20165-70.
128. Su, L.; Zhao, Y.; Yang, F.; Wu, T.; Cheng, G.; Luo, W. Ultrafine phosphorus-doped rhodium for enhanced hydrogen electrocatalysis in alkaline electrolytes. J. Mater. Chem. A. 2020, 8, 11923-7.
129. Du, J.; Wang, X.; Li, C.; Liu, X.; Gu, L.; Liang, H. Hollow Rh nanoparticles with nanoporous shell as efficient electrocatalyst for hydrogen evolution reaction. Electrochim. Acta. 2018, 282, 853-9.
130. Dang, Q.; Liao, F.; Sun, Y.; et al. Rhodium/silicon quantum dot/carbon quantum dot composites as highly efficient electrocatalysts for hydrogen evolution reaction with Pt-like performance. Electrochim. Acta. 2019, 299, 828-34.
131. Huang, J.; Du, C.; Nie, J.; Zhou, H.; Zhang, X.; Chen, J. Encapsulated Rh nanoparticles in N-doped porous carbon polyhedrons derived from ZIF-8 for efficient HER and ORR electrocatalysis. Electrochim. Acta. 2019, 326, 134982.
132. Wang, Q.; Xu, B.; Xu, C.; et al. Ultrasmall Rh nanoparticles decorated on carbon nanotubes with encapsulated Ni nanoparticles as excellent and pH-universal electrocatalysts for hydrogen evolution reaction. Appl. Surf. Sci. 2019, 495, 143569.
133. Huang, X.; Wang, Y.; Zhu, Q.; Zhou, K.; Zhi, H.; Yang, J. High quality synthesis of Rh nanocubes and their application in hydrazine hydrate oxidation assisted water splitting. Inorg. Chem. Commun. 2021, 134, 109023.
134. Shen, W.; Ge, L.; Sun, Y.; et al. Rhodium nanoparticles/F-doped graphene composites as multifunctional electrocatalyst superior to Pt/C for hydrogen evolution and formic acid oxidation reaction. ACS. Appl. Mater. Interfaces. 2018, 10, 33153-61.
135. Zhang, N.; Shao, Q.; Pi, Y.; Guo, J.; Huang, X. Solvent-mediated shape tuning of well-defined rhodium nanocrystals for efficient electrochemical water splitting. Chem. Mater. 2017, 29, 5009-15.
136. Qin, Q.; Jang, H.; Chen, L.; Nam, G.; Liu, X.; Cho, J. Low loading of RhP and RuP on N, P codoped carbon as two trifunctional electrocatalysts for the oxygen and hydrogen electrode reactions. Adv. Energy. Mater. 2018, 8, 1801478.
137. Xin, H.; Sun, L.; Zhao, Y.; et al. Size-controllable Rh2P nanoparticles on reduced graphene oxide toward highly hydrogen production. Chem. Eng. J. 2023, 466, 143277.
138. Xin, H.; Sun, L.; Zhao, Y.; et al. Surpassing Pt hydrogen production from {200} facet-riched polyhedral Rh2P nanoparticles by one-step synthesis. Appl. Catal. B. Environ. 2023, 330, 122645.
139. Li, Z.; Feng, Y.; Liang, Y. L.; et al. Stable rhodium (IV) oxide for alkaline hydrogen evolution reaction. Adv. Mater. 2020, 32, e1908521.
140. Yoon, D.; Seo, B.; Lee, J.; et al. Facet-controlled hollow Rh2S3 hexagonal nanoprisms as highly active and structurally robust catalysts toward hydrogen evolution reaction. Energy. Environ. Sci. 2016, 9, 850-6.
141. Feng, Q.; He, H.; Sun, Y.; et al. Interfacial electronic interaction regulation of Rh2P by combining N, P co-doped graphene for boosting hydrogen evolution reaction. Ceram. Int. 2024, 50, 10108-16.
142. Wang, Z.; Li, X.; Zhang, H.; et al. Amorphous/crystalline RhFeP metallene for hydrazine-assisted water splitting. Nanotechnology 2024, 35, 225401.
143. Wang, Y.; Fecher, G. H.; Subakti, S.; et al. Nano-scale new Heusler compounds NiRh2 Sb and CuRh2Sb: synthesis, characterization, and application as electrocatalysts. J. Mater. Chem. A. 2023, 11, 2302-13.
144. Deng, K.; Wang, W.; Lian, Z.; et al. A general synthesis of crystal phase controllable aerogels for efficient hydrogen evolution. Small 2023, 19, e2304181.
145. Galdeano-Ruano, C.; Márquez, I.; Lopes, C. W.; et al. Ultra-low metal loading rhodium phosphide electrode for efficient alkaline hydrogen evolution reaction. Int. J. Hydrogen. Energy. 2024, 51, 1200-16.
146. Yang, J.; Zhu, C.; Yang, C. J.; et al. Accelerating the hydrogen production via modifying the fermi surface. Nano. Lett. 2023, 23, 11368-75.
147. Sun, H.; Li, L.; Humayun, M.; et al. Achieving highly efficient pH-universal hydrogen evolution by superhydrophilic amorphous/crystalline Rh(OH)3/NiTe coaxial nanorod array electrode. Appl. Catal. B. Environ. 2022, 305, 121088.
148. Bu, X.; Bu, Y.; Quan, Q.; et al. Superior electrocatalyst for all-pH hydrogen evolution reaction: heterogeneous Rh/N and S co-doped carbon yolk-shell nanospheres. Adv. Funct. Mater. 2022, 32, 2206006.
149. Batugedara, T. N.; Brock, S. L. Role of noble- and base-metal speciation and surface segregation in NixRhxP nanocrystals on electrocatalytic water splitting reactions in Alkaline media. Chem. Mater. 2022, 34, 4414-27.
150. Li, J.; Wang, X.; Yi, L.; et al. Plasma-assisted rhodium incorporation in nickel-iron sulfide nanosheets: enhanced catalytic activity and the Janus mechanism for overall water splitting. Inorg. Chem. Front. 2022, 9, 6237-47.
151. Downes, C. A.; Van Allsburg, K. M.; Tacey, S. A.; et al. Controlled synthesis of transition metal phosphide nanoparticles to establish composition-dependent trends in electrocatalytic activity. Chem. Mater. 2022, 34, 6255-67.
152. Pan, S.; Chang, C.; Luo, F.; Yang, Z. Efficient alkaline water splitting catalyzed by ultrafine rhodium telluride nanoparticles. Chem. Commun. 2022, 58, 13923-6.
153. Yang, S.; Yang, X.; Wang, Q.; et al. Facet-selective hydrogen evolution on Rh2P electrocatalysts in pH-universal media. Chem. Eng. J. 2022, 449, 137790.
154. Zhang, Y.; Li, G.; Zhao, Z.; et al. Atomically isolated Rh sites within highly branched Rh2Sb nanostructures enhance bifunctional hydrogen electrocatalysis. Adv. Mater. 2021, 33, e2105049.
155. Mutinda, S. I.; Batugedara, T. N.; Brown, B.; Brock, S. L. Co2-xRhxP nanoparticles for overall water splitting in basic media: activation by phase-segregation-assisted nanostructuring at the anode. ChemCatChem 2021, 13, 4111-9.
156. Li, Y.; Guo, Y.; Yang, S.; et al. Mesoporous RhRu nanosponges with enhanced water dissociation toward efficient alkaline hydrogen evolution. ACS. Appl. Mater. Interfaces. 2021, 13, 5052-60.
157. Mutinda, S. I.; Batugedara, T. N.; Brown, B.; Adeniran, O.; Liu, Z.; Brock, S. L. Rh2P activity at a fraction of the cost? Co2-xRhxP nanoparticles as electrocatalysts for the hydrogen evolution reaction in acidic media. ACS. Appl. Energy. Mater. 2021, 4, 946-55.
158. Wu, X.; Wang, R.; Li, W.; Feng, B.; Hu, W. Rh2P nanoparticles partially embedded in N/P-doped carbon scaffold at ultralow metal loading for high current density water electrolysis. ACS. Appl. Nano. Mater. 2021, 4, 3369-76.
159. Xin, H.; Dai, Z.; Zhao, Y.; et al. Recording the Pt-beyond hydrogen production electrocatalysis by dirhodium phosphide with an overpotential of only 4.3 mV in alkaline electrolyte. Appl. Catal. B. Environ. 2021, 297, 120457.
160. Yao, Y.; Wang, Z.; Zhang, R.; Zhang, L.; Feng, J.; Wang, A. Effective construction of 3D Rh/Rh2P flake-like assembled heterostructures for efficient hydrogen evolution. J. Alloys. Compd. 2021, 865, 158864.
161. Zhong, W.; Xiao, B.; Lin, Z.; et al. RhSe2: a superior 3D electrocatalyst with multiple active facets for hydrogen evolution reaction in both acid and alkaline solutions. Adv. Mater. 2021, 33, e2007894.
162. Pan, S.; Ma, S.; Chang, C.; Long, X.; Qu, K.; Yang, Z. Activation of rhodium selenides for boosted hydrogen evolution reaction via heterostructure construction. Mater. Today. Phys. 2021, 18, 100401.
163. Luo, F.; Guo, L.; Xie, Y.; et al. Robust hydrogen evolution reaction activity catalyzed by ultrasmall Rh-Rh2P nanoparticles. J. Mater. Chem. A. 2020, 8, 12378-84.
164. Liu, S.; Chen, Y.; Yu, L.; et al. A supramolecular-confinement pyrolysis route to ultrasmall rhodium phosphide nanoparticles as a robust electrocatalyst for hydrogen evolution in the entire pH range and seawater electrolysis. J. Mater. Chem. A. 2020, 8, 25768-79.
165. Singh, N.; Hiller, J.; Metiu, H.; McFarland, E. Investigation of the electrocatalytic activity of rhodium sulfide for hydrogen evolution and hydrogen oxidation. Electrochim. Acta. 2014, 145, 224-30.
166. Chi, J. Q.; Zeng, X. J.; Shang, X.; et al. Embedding RhP in N, P co-doped carbon nanoshells through synergetic phosphorization and pyrolysis for efficient hydrogen evolution. Adv. Funct. Mater. 2019, 29, 1901790.
167. Yang, F.; Zhao, Y.; Du, Y.; et al. A monodisperse Rh2 P-based electrocatalyst for highly efficient and pH-universal hydrogen evolution reaction. Adv. Energy. Mater. 2018, 8, 1703489.
168. Kim, T.; Park, J.; Jin, H.; et al. A facet-controlled Rh3Pb2S2 nanocage as an efficient and robust electrocatalyst toward the hydrogen evolution reaction. Nanoscale 2018, 10, 9845-50.
169. Pu, Z.; Amiinu, I. S.; He, D.; Wang, M.; Li, G.; Mu, S. Activating rhodium phosphide-based catalysts for the pH-universal hydrogen evolution reaction. Nanoscale 2018, 10, 12407-12.
170. Duan, H.; Li, D.; Tang, Y.; et al. High-performance Rh2P electrocatalyst for efficient water splitting. J. Am. Chem. Soc. 2017, 139, 5494-502.
171. Jiang, B.; Sun, Y.; Liao, F.; et al. Rh-Ag-Si ternary composites: highly active hydrogen evolution electrocatalysts over Pt-Ag-Si. J. Mater. Chem. A. 2017, 5, 1623-8.
172. Jiang, B.; Yang, L.; Liao, F.; et al. A stepwise-designed Rh-Au-Si nanocomposite that surpasses Pt/C hydrogen evolution activity at high overpotentials. Nano. Res. 2017, 10, 1749-55.
173. Jin, D.; Yu, A.; Lee, Y.; Kim, M. H.; Lee, C. NixRh1-x bimetallic alloy nanofibers as a pH-universal electrocatalyst for the hydrogen evolution reaction: the synthetic strategy and fascinating electroactivity. J. Mater. Chem. A. 2020, 8, 8629-37.
174. Nguyen, N. A.; Choi, H. S. Effect of Ni/Rh ratios on characteristics of NixRhy nanosponges towards high-performance hydrogen evolution reaction. Data. Brief. 2019, 24, 103941.
175. Li, H.; Sun, M.; Pan, Y.; et al. The self-complementary effect through strong orbital coupling in ultrathin high-entropy alloy nanowires boosting pH-universal multifunctional electrocatalysis. Appl. Catal. B. Environ. 2022, 312, 121431.
176. Kang, Y.; Cretu, O.; Kikkawa, J.; et al. Mesoporous multimetallic nanospheres with exposed highly entropic alloy sites. Nat. Commun. 2023, 14, 4182.
177. Zhao, Y.; Bai, J.; Wu, X.; et al. Atomically ultrathin RhCo alloy nanosheet aggregates for efficient water electrolysis in broad pH range. J. Mater. Chem. A. 2019, 7, 16437-46.
178. Sarno, M.; Ponticorvo, E.; Scarpa, D. PtRh and PtRh/MoS2 nano-electrocatalysts for methanol oxidation and hydrogen evolution reactions. Chem. Eng. J. 2019, 377, 120600.
179. Li, Q.; Sun, C.; Fu, H.; et al. Enhanced alkaline hydrogen evolution reaction through lanthanide-modified rhodium intermetallic catalysts. Small 2024, 20, e2307052.
180. Li, Q.; Zhang, B.; Sun, C.; et al. Enhanced alkaline hydrogen evolution reaction via electronic structure regulation: activating PtRh with rare earth Tm alloying. Small 2024, 20, e2400662.
181. Nguyen, M. T.; Deng, L.; Yonezawa, T. Control of nanoparticles synthesized via vacuum sputter deposition onto liquids: a review. Soft. Matter. 2021, 18, 19-47.
182. Pełech, I.; Narkiewicz, U.; Kaczmarek, A.; Jędrzejewska, A.; Pełech, R. Removal of metal particles from carbon nanotubes using conventional and microwave methods. Sep. Purif. Technol. 2014, 136, 105-10.
183. Hsieh, T. E.; Frisch, J.; Wilks, R. G.; Papp, C.; Bär, M. Impact of catalysis-relevant oxidation and annealing treatments on nanostructured GaRh alloys. ACS. Appl. Mater. Interfaces. 2024, 16, 19858-65.
184. Zou, Y.; Jing, L.; Zhang, J.; et al. ALD-made noble metal high entropy alloy nanofilm with sub-surface amorphization for enhanced hydrogen evolution. J. Mater. Chem. A. 2024, 12, 5668-78.
185. Yan, S.; Yang, X.; Zhong, M.; et al. Better than Pt in all-pH media: a charge transfer modulating hydrogen adsorption in cobalt-rhodium alloy aerogel to boost hydrogen evolution. Chem. Eng. J. 2023, 474, 145777.
186. Wei, M.; Sun, Y.; Zhang, J.; Ai, F.; Xi, S.; Wang, J. High-entropy alloy nanocrystal assembled by nanosheets with d-d electron interaction for hydrogen evolution reaction. Energy. Environ. Sci. 2023, 16, 4009-19.
187. Jing, L.; Zou, Y.; Goei, R.; et al. Conformal noble metal high-entropy alloy nanofilms by atomic layer deposition for an enhanced hydrogen evolution reaction. Langmuir 2023, 39, 3142-50.
188. Wei, M.; Sun, Y.; Ai, F.; Xi, S.; Zhang, J.; Wang, J. Stretchable high-entropy alloy nanoflowers enable enhanced alkaline hydrogen evolution catalysis. Appl. Catal. B. Environ. 2023, 334, 122814.
189. Zhang, M.; Duan, Z.; Cui, L.; et al. A phosphorus modified mesoporous AuRh film as an efficient bifunctional electrocatalyst for urea-assisted energy-saving hydrogen production. J. Mater. Chem. A. 2022, 10, 3086-92.
190. Tian, W.; Zhang, X.; Wang, Z.; et al. Amorphization activated RhPb nanflowers for energy-saving hydrogen production by hydrazine-assisted water electrolysis. Chem. Eng. J. 2022, 440, 135848.
191. He, Z.; Wang, H.; Yu, T.; et al. Trimetallic Au@RhCu core-shell nanodendrites as efficient bifunctional electrocatalysts toward hydrogen and oxygen evolution reactions. ChemistrySelect 2022, 7, e202103472.
192. Jiang, X.; Dong, Z.; Zhang, Q.; et al. Decoupled hydrogen evolution from water/seawater splitting by integrating ethylene glycol oxidation on PtRh0.02@Rh nanowires with Rh atom modification. J. Mater. Chem. A. 2022, 10, 20571-9.
193. Nam, Y.; Jin, D.; Lee, C.; Lee, Y. Fe-Cu-Rh ternary alloy nanofibers as an outstanding pH-universal electrocatalyst for hydrogen evolution reaction: the catalytic roles of Fe depending on pH. Appl. Surf. Sci. 2023, 611, 155484.
194. Jiang, A.; Chen, J.; Liu, S.; et al. Intermetallic rhodium alloy nanoparticles for electrocatalysis. ACS. Appl. Nano. Mater. 2021, 4, 13716-23.
195. Chen, M. T.; Zhang, R. L.; Feng, J. J.; et al. A facile one-pot room-temperature growth of self-supported ultrathin rhodium-iridium nanosheets as high-efficiency electrocatalysts for hydrogen evolution reaction. J. Colloid. Interface. Sci. 2022, 606, 1707-14.
196. Kani, K.; Lim, H.; Whitten, A. E.; et al. First electrochemical synthesis of mesoporous RhNi alloy films for an alkali-mediated hydrogen evolution reaction. J. Mater. Chem. A. 2021, 9, 2754-63.
197. Zhang, M.; Xu, Y.; Wang, S.; et al. Polyethylenimine-modified bimetallic Au@Rh core-shell mesoporous nanospheres surpass Pt for pH-universal hydrogen evolution electrocatalysis. J. Mater. Chem. A. 2021, 9, 13080-6.
198. Wang, Y.; Yu, B.; He, M.; et al. Eutectic-derived high-entropy nanoporous nanowires for efficient and stable water-to-hydrogen conversion. Nano. Res. 2021, 15, 4820-6.
199. Xie, Y. X.; Cen, S. Y.; Ma, Y. T.; Chen, H. Y.; Wang, A. J.; Feng, J. J. Facile synthesis of platinum-rhodium alloy nanodendrites as an advanced electrocatalyst for ethylene glycol oxidation and hydrogen evolution reactions. J. Colloid. Interface. Sci. 2020, 579, 250-7.
200. Han, Z.; Zhang, R.; Duan, J.; et al. Platinum-rhodium alloyed dendritic nanoassemblies: an all-pH efficient and stable electrocatalyst for hydrogen evolution reaction. Int. J. Hydrogen. Energy. 2020, 45, 6110-9.
201. Karthick, K.; Mansoor Basha, A. B.; Sivakumaran, A.; Kundu, S. Enhancement of HER kinetics with RhNiFe for high-rate water electrolysis. Catal. Sci. Technol. 2020, 10, 3681-93.
202. Jin, Y.; Chen, F.; Wang, J.; Guo, L.; Jin, T.; Liu, H. Lamellar platinum-rhodium aerogels with superior electrocatalytic performance for both hydrogen oxidation and evolution reaction in alkaline environment. J. Power. Sources. 2019, 435, 226798.
203. Zhang, B.; Zheng, Y.; Xing, Z.; et al. Interfacial electron-engineered tungsten oxynitride interconnected rhodium layer for highly efficient all-pH-value hydrogen production. J. Mater. Chem. A. 2024, 12, 4484-91.
204. Pan, S.; Li, C.; Xiong, T.; Xie, Y.; Luo, F.; Yang, Z. Hydrogen spillover in MoOxRh hierarchical nanosheets boosts alkaline HER catalytic activity. Appl. Catal. B. Environ. 2024, 341, 123275.
205. Wu, J.; Fan, J.; Zhao, X.; et al. Atomically dispersed MoOx on rhodium metallene boosts electrocatalyzed alkaline hydrogen evolution. Angew. Chem. Int. Ed. 2022, 61, e202207512.
206. Zhao, Y.; Yang, C.; Mao, G.; Su, J.; Cheng, G.; Luo, W. Ultrafine Rh nanoparticle decorated MoSe2 nanoflowers for efficient alkaline hydrogen evolution reaction. Inorg. Chem. Front. 2018, 5, 2978-84.
207. Sun, H.; Zhang, W.; Li, J.; et al. Rh-engineered ultrathin NiFe-LDH nanosheets enable highly-efficient overall water splitting and urea electrolysis. Appl. Catal. B. Environ. 2021, 284, 119740.
208. Skibińska, K.; Kutyła, D.; Yang, X.; Krause, L.; Marzec, M. M.; Żabiński, P. Rhodium-decorated nanoconical nickel electrode synthesis and characterization as an electrochemical active cathodic material for hydrogen production. Appl. Surf. Sci. 2022, 592, 153326.
209. Chen, M. T.; Duan, J. J.; Feng, J. J.; et al. Iron, rhodium-codoped Ni2P nanosheets arrays supported on nickel foam as an efficient bifunctional electrocatalyst for overall water splitting. J. Colloid. Interface. Sci. 2022, 605, 888-96.
210. Zheng, H.; Huang, X.; Gao, H.; et al. Decorating cobalt phosphide and rhodium on reduced graphene oxide for high-efficiency hydrogen evolution reaction. J. Energy. Chem. 2019, 34, 72-9.
211. Gao, J.; Yu, W.; Liu, J.; et al. Regulation of hydrogen binding energy via oxygen vacancy enables an efficient trifunctional Rh-Rh2O3 electrocatalyst for fuel cells and water splitting. J. Colloid. Interface. Sci. 2024, 664, 766-78.
212. Liu, X.; Chen, G.; Guo, Y.; et al. Fabric-like rhodium-nickel-tungsten oxide nanosheets for highly-efficient electrocatalytic H2 generation in an alkaline electrolyte. J. Colloid. Interface. Sci. 2024, 659, 895-904.
213. Higashi, T.; Seki, K.; Nandal, V.; et al. Understanding the activation mechanism of RhCrOx cocatalysts for hydrogen evolution with nanoparticulate electrodes. ACS. Appl. Mater. Interfaces. 2024, 16, 26325-39.
214. Perumal, S.; Seo, J. Enhanced alkaline water splitting on cobalt phosphide sites by 4d metal (Rh)-doping method. Int. J. Hydrogen. Energy. 2023, 48, 22009-20.
215. Nedić Vasiljević, B.; Jovanović, A. Z.; Mentus, S. V.; Skorodumova, N. V.; Pašti, I. A. Galvanic displacement of Co with Rh boosts hydrogen and oxygen evolution reactions in alkaline media. J. Solid. State. Electrochem. 2023, 27, 1877-87.
216. Nguyen, N.; Chuluunbat, E.; Nguyen, T. A.; Choi, H. High electrocatalytic activity of Rh-WO3 electrocatalyst for hydrogen evolution reaction under the acidic, alkaline, and alkaline-seawater electrolytes. Int. J. Hydrogen. Energy. 2023, 48, 32686-98.
217. Bhuvanendran, N.; Park, C. W.; Su, H.; Lee, S. Y. Multifunctional Pt3Rh-Co3O4 alloy nanoparticles with Pt-enriched surface and induced synergistic effect for improved performance in ORR, OER, and HER. Environ. Res. 2023, 229, 115950.
218. Zhou, Y.; Hao, W.; Zhao, X.; et al. Electronegativity-induced charge balancing to boost stability and activity of amorphous electrocatalysts. Adv. Mater. 2022, 34, e2100537.
219. Gao, Y.; Qi, L.; He, F.; Xue, Y.; Li, Y. Selectively growing a highly active interface of mixed Nb-Rh Oxide/2D carbon for electrocatalytic hydrogen production. Adv. Sci. 2022, 9, e2104706.
220. Wang, Y.; Luo, X.; Lu, W.; et al. Carbon supported bifunctional Rh-Ni(OH)2/C nanocomposite catalysts with high electrocatalytic efficiency for alkaline hydrogen evolution reaction. Int. J. Hydrogen. Energy. 2022, 47, 13674-82.
221. Jovanović, A. Z.; Bijelić, L.; Dobrota, A. S.; Skorodumova, N. V.; Mentus, S. V.; Pašti, I. A. Enhancement of hydrogen evolution reaction kinetics in alkaline media by fast galvanic displacement of nickel with rhodium - from smooth surfaces to electrodeposited nickel foams. Electrochim. Acta. 2022, 414, 140214.
222. Wang, R.; Wang, X.; Cheng, M.; et al. Phosphatizing engineering of heterostructured Rh2P/Rh nanoparticles on doped graphene for efficient hydrogen evolution in alkaline and acidic media. Int. J. Hydrogen. Energy. 2022, 47, 24669-79.
223. Zhu, K.; Chen, J.; Wang, W.; et al. Etching-doping sedimentation equilibrium strategy: accelerating kinetics on hollow Rh-doped CoFe-layered double hydroxides for water splitting. Adv. Funct. Mater. 2020, 30, 2003556.
224. Rodrigues, M. P. D. S.; Dourado, A. H. B.; Cutolo, L. D. O.; et al. Gold-rhodium nanoflowers for the plasmon-enhanced hydrogen evolution reaction under visible light. ACS. Catal. 2021, 11, 13543-55.
225. Tran, P. K. L.; Tran, D. T.; Malhotra, D.; et al. Highly effective freshwater and seawater electrolysis enabled by atomic Rh-modulated Co-CoO lateral heterostructures. Small 2021, 17, e2103826.
226. Wen, B. Y.; Chen, Q. Q.; Radjenovic, P. M.; Dong, J. C.; Tian, Z. Q.; Li, J. F. In situ surface-enhanced raman spectroscopy characterization of electrocatalysis with different nanostructures. Annu. Rev. Phys. Chem. 2021, 72, 331-51.
227. Wen, J.; Tang, S.; Wu, X.; et al. Unraveling the mechanism of hydrogen evolution reactions in alkaline media: recent advances in in situ Raman spectroscopy. Chem. Commun. 2025, 61, 8778-89.
228. Kim, J. H.; Jo, H. J.; Han, S. M.; Kim, Y. J.; Kim, S. Y. Recent advances in electrocatalysts for anion exchange membrane water electrolysis: design strategies and characterization approaches. Energy. Mater. 2025, 5, 500099.
229. Zhang, X.; Guo, Y.; Wang, C. Multi-interface engineering of nickel-based electrocatalysts for alkaline hydrogen evolution reaction. Energy. Mater. 2024, 4, 400044.
230. Aigbe, U. O.; Osibote, O. A. Green synthesis of metal oxide nanoparticles, and their various applications. J. J. Hazard. Mater. Adv. 2024, 13, 100401.
231. Eweis, A. A.; El-Raheem, H. A.; Ahmad, M. S.; Hozzein, W. N.; Mahmoud, R. Green fabrication of nanomaterials using microorganisms as nano-factories. J. Cluster. Sci. 2024, 35, 2149-76.
232. Kim, J.; Seo, J. H.; Lee, J. K.; Oh, M. H.; Jang, H. W. Challenges and strategies in catalysts design towards efficient and durable alkaline seawater electrolysis for green hydrogen production. Energy. Mater. 2025, 5, 500076.
233. Wang, J.; Ma, J.; Du, H.; Ma, R.; Wang, J. Electrifying nitrate conversion: dual-metal-site catalysts as a game-changer for sustainable NH3production. Nano. Res. 2025.
234. Qiu, C.; Brinck, T.; Wang, J. Modeling the potential energy surface by force fields for heterogeneous catalysis: classification, applications, and challenges. Chem. Sci. 2025, 16, 21269-97.






