REFERENCES

1. Zhao, Y.; Niu, Z.; Zhao, J.; Xue, L.; Fu, X.; Long, J. Recent advancements in photoelectrochemical water splitting for hydrogen production. Electrochem. Energy. Rev. 2023, 6, 14.

2. Dong, Z.; Chen, M.; Qin, D.; Han, S. Recent advances and perspective of modified TiO2-based photoanodes toward photoelectrochemical water splitting. Fuel 2024, 373, 132366.

3. Su, Y.; Yu, W.; Liao, L.; et al. Unveiling the synergy of interfacial contact and defects in α-Fe2O3 for enhanced photo-electrochemical water splitting. Adv. Funct. Mater. 2023, 33, 2303976.

4. Gonçalves, S.; Quitério, P.; Freitas, J.; et al. Unveiling morphology-structure interplay on hydrothermal WO3 nanoplatelets for photoelectrochemical solar water splitting. ACS. Appl. Mater. Interfaces. 2024, 16, 64389-409.

5. Gaikwad, M. A.; Suryawanshi, U. P.; Ghorpade, U. V.; Jang, J. S.; Suryawanshi, M. P.; Kim, J. H. Emerging surface, bulk, and interface engineering strategies on BiVO4 for photoelectrochemical water splitting. Small 2022, 18, 2105084.

6. Das, A.; Devasia, S.; Banerjee, N.; Nair, R. G. High aspect ratio ZnO nanorods for improved photoelectrochemical (PEC) water splitting performances and efficient photocatalytic hydrogen evolution: an integrated experimental and DFT studies. Appl. Surf. Sci. 2025, 699, 163160.

7. Fu, J.; Fan, Z.; Nakabayashi, M.; et al. Interface engineering of Ta3N5 thin film photoanode for highly efficient photoelectrochemical water splitting. Nat. Commun. 2022, 13, 729.

8. Hojamberdiev, M.; Vargas, R.; Zhang, F.; Teshima, K.; Lerch, M. Perovskite BaTaO2N: from materials synthesis to solar water splitting. Adv. Sci. 2023, 10, 2305179.

9. Shabbir, S. A.; Ali, I.; Haris, M.; et al. Bifunctional Co3O4/g-C3N4 hetrostructures for photoelectrochemical water splitting. ACS. Omega. 2024, 9, 21450-8.

10. Teitsworth, T. S.; Hill, D. J.; Litvin, S. R.; et al. Water splitting with silicon p-i-n superlattices suspended in solution. Nature 2023, 614, 270-4.

11. Wang, T.; Wang, Y.; Liu, Y.; et al. Construction of Z-type In2O3@InP heterostructure with enhanced photo-assisted electrocatalytic water splitting for hydrogen production. Int. J. Hydrogen. Energy. 2024, 64, 166-77.

12. Alotaibi, A. M.; Muayqil, E.; Al Abass, N.; et al. Surface engineering of CuO-Cu2O heterojunction thin films for improved photoelectrochemical water splitting. Renew. Energy. 2024, 235, 121326.

13. Cai, Y.; Wang, S.; Liu, B.; et al. Semi-transparent and stable In2S3/CdTe heterojunction photoanodes for unbiased photoelectrochemical water splitting. Nat. Commun. 2025, 16, 5105.

14. Štěpánek, J.; Bystron, T.; Paušová, Š. Two-step synthesis and characterization of CuFeO2 thin layers for photoelectrocatalytic applications. Electrochimica. Acta. 2025, 535, 146516.

15. Wang, Z.; Zhu, H.; Tu, W.; et al. Host/guest nanostructured photoanodes integrated with targeted enhancement strategies for photoelectrochemical water splitting. Adv. Sci. 2022, 9, 2103744.

16. Kang, J.; Yoon, K.; Lee, J.; Park, J.; Chaule, S.; Jang, J. Meso-pore generating P doping for efficient photoelectrochemical water splitting. Nano. Energy. 2023, 107, 108090.

17. Yuan, H.; Zhang, Y.; Su, Y.; et al. A novel BiVO4/DLC heterojunction for efficient photoelectrochemical water splitting. Chem. Eng. J. 2023, 459, 141637.

18. Li, C.; Xiao, J.; Jia, X.; Zhao, Q.; Du, B.; Wang, B. Unveiling the influence of lower-valence Ni in hydroxide Co-catalyst and attaining efficient photoanodes with FeOOH holes transfer layer for photoelectrochemical water splitting. Adv. Funct. Mater. 2025, 35, 2406999.

19. Mo, Y.; Deng, X.; Liu, P.; Guo, J.; Wang, W.; Li, G. Insights into the application of carbon materials in heterojunction solar cells. Mater. Sci. Eng. R. Rep. 2023, 152, 100711.

20. Zhang, X.; Lu, G.; Ning, X.; Wang, C. Boron substitution enhanced activity of BxGa1-xAs/GaAs photocatalyst for water splitting. Appl. Catal. B. Environ. 2022, 300, 120690.

21. Kang, D.; Young, J. L.; Lim, H.; et al. Printed assemblies of GaAs photoelectrodes with decoupled optical and reactive interfaces for unassisted solar water splitting. Nat. Energy. 2017, 2, 17043.

22. Vu TK, Tran MT, Kim EK. Optimization of active antireflection ZnO films for p-GaAs-based heterojunction solar cells. J. Alloys. Compd. 2022, 924, 166531.

23. Wang, J.; Guo, J.; Liang, J.; et al. InP QDs modified GaAs/PEDOT:PSS hybrid solar cell with efficiency over 15%. Nano. Lett. 2024, 24, 12111-7.

24. Lin, S.; Li, X.; Wang, P.; et al. Interface designed MoS2/GaAs heterostructure solar cell with sandwich stacked hexagonal boron nitride. Sci. Rep. 2015, 5, 15103.

25. Haggren, T.; Raj, V.; Haggren, A.; Gagrani, N.; Jagadish, C.; Tan, H. CuI as a hole-selective contact for GaAs solar cells. ACS. Appl. Mater. Interfaces. 2022, 14, 52918-26.

26. Wen, L.; Gao, F.; Yu, Y.; et al. Enhancing the photovoltaic performance of GaAs/graphene Schottky junction solar cells by interfacial modification with self assembled alkyl thiol monolayer. J. Mater. Chem. A. 2018, 6, 17361-70.

27. Li, X.; Chen, W.; Zhang, S.; et al. 18.5% efficient graphene/GaAs van der Waals heterostructure solar cell. Nano. Energy. 2015, 16, 310-9.

28. Chen, Y.; Shi, X.; Zhou, D.; et al. Highly efficient SWCNT/GaAs van der Waals heterojunction solar cells enhanced by Nafion doping. J. Alloys. Compd. 2023, 932, 167624.

29. Tan, X.; Cen, W.; Qian, G.; Chen, Q.; Xie, Q. The GaAs/InS vdW heterostructure shows great potential as a solar-driven water splitting photocatalyst. Mater. Sci. Semicond. Process. 2023, 167, 107779.

30. Arunachalam, M.; Kanase, R. S.; Zhu, K.; Kang, S. H. Reliable bi-functional nickel-phosphate/TiO2 integration enables stable n-GaAs photoanode for water oxidation under alkaline condition. Nat. Commun. 2023, 14, 5429.

31. Mo, Y.; Xie, S.; Huang, T.; et al. Self-integrated carbon nanotube/graphene oxide-based GaAs heterojunction synergistically achieve unassisted water splitting with solar-to-hydrogen efficiency over 15%. Chem. Eng. J. 2025, 519, 164889.

32. Mo, Y.; Guo, C.; Wang, W.; et al. Interface passivation treatment enables GaAs/CNT heterojunction solar cells over 19 % efficiency. Nano. Energy. 2024, 131, 110247.

33. Xia, Y.; Chen, X.; Wei, J.; et al. 12-inch growth of uniform MoS2 monolayer for integrated circuit manufacture. Nat. Mater. 2023, 22, 1324-31.

34. Zhu, Z.; Tang, Y.; Leow, W. R.; et al. Approaching the lithiation limit of MoS2 while maintaining its layered crystalline structure to improve lithium storage. Angew. Chem. Int. Ed. 2019, 58, 3521-6.

35. Mouri, S.; Miyauchi, Y.; Matsuda, K. Tunable photoluminescence of monolayer MoS2 via chemical doping. Nano. Lett. 2013, 13, 5944-8.

36. Benoist, L. XPS analysis of oxido-reduction mechanisms during lithium intercalation in amorphous molybdenum oxysulfide thin films. Solid. State. Ionics. 1995, 76, 81-9.

37. Zhang, Y.; Sun, Y.; Zhong, B. Synthesis of higher alcohols from syngas over ultrafine Mo-Co-K catalysts. Catal. Lett. 2001, 76, 249-53.

38. Tsuboi, Y.; Wang, F.; Kozawa, D.; et al. Enhanced photovoltaic performances of graphene/Si solar cells by insertion of a MoS2 thin film. Nanoscale 2015, 7, 14476-82.

39. Mak, K. F.; Lee, C.; Hone, J.; Shan, J.; Heinz, T. F. Atomically thin MoS2: a new direct-gap semiconductor. Phys. Rev. Lett. 2010, 105, 136805.

40. Frey, G. L.; Elani, S.; Homyonfer, M.; Feldman, Y.; Tenne, R. Optical-absorption spectra of inorganic fullerenelike MS2 ( M=Mo, W). Phys. Rev. B. 1998, 57, 6666.

41. Komesu, T.; Le, D.; Ma, Q.; et al. Symmetry-resolved surface-derived electronic structure of MoS2(0 0 0 1). J. Phys. Condens. Matter. 2014, 26, 455501.

42. Zhao, C.; Zhou, X.; Xie, S.; et al. DFT study of electronic structure and properties of N, Si and Pd-doped carbon nanotubes. Ceram. Int. 2018, 44, 21027-33.

43. Lee, G. H.; Cui, X.; Kim, Y. D.; et al. Highly stable, dual-gated MoS2 transistors encapsulated by hexagonal boron nitride with gate-controllable contact, resistance, and threshold voltage. ACS. Nano. 2015, 9, 7019-26.

44. Ding, K.; Zhang, X.; Ning, L.; et al. Hue tunable, high color saturation and high-efficiency graphene/silicon heterojunction solar cells with MgF2/ZnS double anti-reflection layer. Nano. Energy. 2018, 46, 257-65.

45. Abbasian, S.; Sabbaghi-nadooshan, R. Optimum design of ARC-less InGaP/GaAs DJ solar cell with hetero tunnel junction. J. Electron. Mater. 2018, 47, 3585-95.

46. Hemani, A.; Dennai, B.; Nouri, A.; Khachab, H.; Dekkich, B. Effect of the FSF and BSF layers on the performances of the GaAs solar cell. J. Ovonic. Res. 2017, 13, 307-14. https://chalcogen.ro/307_AbderrahmaneH.pdf (accessed 2025-11-24).

47. Siavash, Moakhar. R.; Hosseini-Hosseinabad, S. M.; Masudy-Panah, S.; et al. Photoelectrochemical water-splitting using CuO-based electrodes for hydrogen production: a review. Adv. Mater. 2021, 33, 2007285.

48. Chen, W.; Buyanova, I.; Tu, C.; Yonezu, H. Point defects in dilute nitride III-N-As and III-N-P. Phy. B. Condens. Matter. 2006, 376-7, 545-51.

49. Meng, X.; Li, Z.; Liu, Y.; et al. Enabling unassisted solar water splitting with concurrent high efficiency and stability by robust earth-abundant bifunctional electrocatalysts. Nano. Energy. 2023, 109, 108296.

50. Butson, J. D.; Sharma, A.; Chen, H.; et al. Surface-structured cocatalyst foils unraveling a pathway to high-performance solar water splitting. Adv. Energy. Mater. 2022, 12, 2102752.

51. Sun, K.; Liu, R.; Chen, Y.; Verlage, E.; Lewis, N. S.; Xiang, C. A stabilized, intrinsically safe, 10% efficient, solar-driven water-splitting cell incorporating earth-abundant electrocatalysts with steady-state pH gradients and product separation enabled by a bipolar membrane. Adv. Energy. Mater. 2016, 6, 1600379.

52. Ben-naim, M.; Britto, R. J.; Aldridge, C. W.; et al. Addressing the stability gap in photoelectrochemistry: molybdenum disulfide protective catalysts for tandem III-V unassisted solar water splitting. ACS. Energy. Lett. 2020, 5, 2631-40.

Energy Materials
ISSN 2770-5900 (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/