REFERENCES

1. Sheng, L.; Chang, J.; Jiang, L.; et al. Multilayer-folded graphene ribbon film with ultrahigh areal capacitance and high rate performance for compressible supercapacitors. Adv. Funct. Mater. 2018, 28, 1800597.

2. Peng, C.; Li, Q.; Niu, L.; et al. Direct heating pattern on graphene oxide film to build flexible micro-supercapacitors. Carbon 2021, 175, 27-35.

3. Nemala, S. S.; Fernandes, J.; Rodrigues, J.; et al. Sustainable graphene production for solution-processed microsupercapacitors and multipurpose flexible electronics. Nano. Energy. 2024, 127, 109781.

4. Mohamed, N. B.; El-kady, M. F.; Kaner, R. B. Macroporous graphene frameworks for sensing and supercapacitor applications. Adv. Funct. Materials. 2022, 32, 2203101.

5. Lui, C. H.; Liu, L.; Mak, K. F.; Flynn, G. W.; Heinz, T. F. Ultraflat graphene. Nature 2009, 462, 339-41.

6. Geim, A. K. Graphene: status and prospects. Science 2009, 324, 1530-4.

7. Novoselov, K. S.; Fal'ko, V. I.; Colombo, L.; Gellert, P. R.; Schwab, M. G.; Kim, K. A roadmap for graphene. Nature 2012, 490, 192-200.

8. Randviir, E. P.; Brownson, D. A.; Banks, C. E. A decade of graphene research: production, applications and outlook. Materials. Today. 2014, 17, 426-32.

9. Xiao, K.; Jiang, X.; Zeng, S.; et al. Porous structure-electrochemical performance relationship of carbonaceous electrode-based zinc ion capacitors. Adv. Funct. Mater. 2024, 34, 2405830.

10. Zhang, J.; Liu, W.; Du, M.; et al. Kinetic investigation of the energy storage process in graphene fiber supercapacitors: unraveling mechanisms, fabrications, property manipulation, and wearable applications. Carbon. Energy. 2025, 7, e625.

11. Bai, C.; Li, S.; Ji, K.; Wang, M.; Kong, D. Stretchable microbatteries and microsupercapacitors for next-generation wearable electronics. Energy. Mater. 2023, 3, 300041.

12. Tan, Y. B.; Lee, J. Graphene for supercapacitor applications. J. Mater. Chem. A. 2013, 1, 14814-43.

13. Liu, Z.; Jiang, L.; Sheng, L.; et al. Oxygen clusters distributed in graphene with “paddy land” structure: ultrahigh capacitance and rate performance for supercapacitors. Adv. Funct. Materials. 2018, 28, 1705258.

14. Fu, Y.; Xu, L.; Tian, W.; Liu, Y.; Cao, D.; Wang, Q. Self-assembly of free-standing surface-oxidized multilayer graphene film for high volumetric supercapacitors. Carbon 2023, 213, 118286.

15. Zhang, H.; Yang, D.; Lau, A.; Ma, T.; Lin, H.; Jia, B. Hybridized graphene for supercapacitors: beyond the limitation of pure graphene. Small 2021, 17, 2007311.

16. Zhang, C. J.; Nicolosi, V. Graphene and MXene-based transparent conductive electrodes and supercapacitors. Energy. Storage. Mater. 2019, 16, 102-25.

17. Ye, X.; Zhou, Q.; Jia, C.; Tang, Z.; Zhu, Y.; Wan, Z. Producing large-area, foldable graphene paper from graphite oxide suspensions by in-situ chemical reduction process. Carbon 2017, 114, 424-34.

18. Yoon, Y.; Lee, K.; Kwon, S.; et al. Vertical alignments of graphene sheets spatially and densely piled for fast ion diffusion in compact supercapacitors. ACS. Nano. 2014, 8, 4580-90.

19. Chen, C.; Huang, J.; Zhang, Q.; et al. Annealing a graphene oxide film to produce a free standing high conductive graphene film. Carbon 2012, 50, 659-67.

20. Lin, Y.; Balizan, E.; Lee, L. A.; Niu, Z.; Wang, Q. Self-assembly of rodlike bio-nanoparticles in capillary tubes. Angew. Chem. Int. Ed. Engl. 2010, 49, 868-72.

21. Torrisi, L.; Cutroneo, M.; Havranek, V.; et al. Self-supporting graphene oxide films preparation and characterization methods. Vacuum 2019, 160, 1-11.

22. Kim, J. E.; Han, T. H.; Lee, S. H.; et al. Graphene oxide liquid crystals. Angew. Chem. Int. Ed. Engl. 2011, 50, 3043-7.

23. Zheng, W.; Liu, J.; Guo, Y.; Han, G.; Yi, Y. Regulation of molecular orientations of A-D-A nonfullerene acceptors for organic photovoltaics: the role of end-group π-π stacking. Adv. Funct. Mater. 2022, 32, 2108551.

24. Tian, J.; Wu, S.; Yin, X.; Wu, W. Novel preparation of hydrophilic graphene/graphene oxide nanosheets for supercapacitor electrode. Appl. Surf. Sci. 2019, 496, 143696.

25. Wu, Z. S.; Parvez, K.; Li, S.; et al. Alternating stacked graphene-conducting polymer compact films with ultrahigh areal and volumetric capacitances for high-energy micro-supercapacitors. Adv. Mater. 2015, 27, 4054-61.

26. Xin, G.; Zhu, W.; Deng, Y.; et al. Microfluidics-enabled orientation and microstructure control of macroscopic graphene fibres. Nat. Nanotechnol. 2019, 14, 168-75.

27. Lee, D.; Seo, J. Layer-by-layer-stacked graphene/graphene-island supercapacitor. AIP. Adv. 2020, 10, 055202.

28. Long, C.; Chen, X.; Jiang, L.; Zhi, L.; Fan, Z. Porous layer-stacking carbon derived from in-built template in biomass for high volumetric performance supercapacitors. Nano. Energy. 2015, 12, 141-51.

29. Arvas, M. B.; Karatepe, N.; Gencten, M.; Sahin, Y. Fabrication of high-performance symmetrical coin cell supercapacitors by using one step and green synthesis sulfur doped graphene powders. New. J. Chem. 2021, 45, 6928-39.

30. Jiang, L.; Sheng, L.; Long, C.; Wei, T.; Fan, Z. Functional pillared graphene frameworks for ultrahigh volumetric performance supercapacitors. Adv. Energy. Mater. 2015, 5, 1500771.

31. Haridas, H.; Kader, A. K. A.; Sellathurai, A.; Barz, D. P. J.; Kontopoulou, M. Noncovalent functionalization of graphene nanoplatelets and their applications in supercapacitors. ACS. Appl. Mater. Interfaces. 2024, 16, 16630-40.

32. Chan, K.; Lin, H.; Qiao, K.; Jia, B.; Lau, K. Multifunctional graphene oxide paper embodied structural dielectric capacitor based on carbon fibre reinforced composites. Compos. Sci. Technol. 2018, 163, 180-90.

33. Sun, M. H.; Huang, S. Z.; Chen, L. H.; et al. Applications of hierarchically structured porous materials from energy storage and conversion, catalysis, photocatalysis, adsorption, separation, and sensing to biomedicine. Chem. Soc. Rev. 2016, 45, 3479-563.

34. Costentin, C.; Savéant, J. M. Energy storage: pseudocapacitance in prospect. Chem. Sci. 2019, 10, 5656-66.

35. Qiu, J.; Wang, D.; Geng, H.; Guo, J.; Qian, S.; Liu, X. How Oxygen-Containing Groups on Graphene Influence the Antibacterial Behaviors. Adv. Mater. Interfaces. 2017, 4, 1700228.

36. Singla, R.; Kottantharayil, A. Stable hydroxyl functionalization and p-type doping of graphene by a non-destructive photo-chemical method. Carbon 2019, 152, 267-73.

37. Russell, J. C.; Posey, V. A.; Gray, J.; et al. High-performance organic pseudocapacitors via molecular contortion. Nat. Mater. 2021, 20, 1136-41.

38. Wu, X.; Yang, D.; Wang, C.; Jiang, Y.; Wei, T.; Fan, Z. Functionalized three-dimensional graphene networks for high performance supercapacitors. Carbon 2015, 92, 26-30.

39. Khine, Y. Y.; Wen, X.; Jin, X.; Foller, T.; Joshi, R. Functional groups in graphene oxide. Phys. Chem. Chem. Phys. 2022, 24, 26337-55.

40. Zhao, X.; Zhou, Y.; Xu, Y.; et al. Customizing oxygen-containing functional groups for reduced graphene oxide film supercapacitor with high volumetric performance. J. Energy. Storage. 2022, 52, 104642.

41. Guo, J.; Wang, R.; Tjiu, W. W.; Pan, J.; Liu, T. Synthesis of Fe nanoparticles@graphene composites for environmental applications. J. Hazard. Mater. 2012, 225-226, 63-73.

42. Reynosa-Martínez, A. C.; Gómez-Chayres, E.; Villaurrutia, R.; López-Honorato, E. Controlled reduction of graphene oxide using sulfuric acid. Materials 2020, 14, 59.

43. Niu, Y.; Zhao, J.; Zhang, X.; et al. Large area orientation films based on graphene oxide self-assembly and low-temperature thermal reduction. Appl. Phys. Lett. 2012, 101, 181903.

44. Li, P.; Yang, M.; Liu, Y.; et al. Continuous crystalline graphene papers with gigapascal strength by intercalation modulated plasticization. Nat. Commun. 2020, 11, 2645.

45. Chen, W.; Xiao, H.; Hou, L.; et al. A flexible composite film electrode and supercapacitor based on combined effect between graphene oxide and graphene. Mater. Sci. Eng. B. 2023, 297, 116724.

46. Yang, Z.; Zhang, J.; Wang, C.; et al. Capillary assisted self-assembly and nascent hydrogen reduction of graphene oxide on Al: Formation of C-O-Al bonds under mild condition. Carbon 2023, 215, 118474.

47. Li, S.; Fan, Z.; Wu, G.; et al. Assembly of nanofluidic MXene fibers with enhanced ionic transport and capacitive charge storage by flake orientation. ACS. Nano. 2021, 15, 7821-32.

48. Singh, M.; Yadav, A.; Kumar, S.; Agarwal, P. Annealing induced electrical conduction and band gap variation in thermally reduced graphene oxide films with different sp2/sp3 fraction. Appl. Surf. Sci. 2015, 326, 236-42.

49. Nia, Z.; Chen, J.; Tang, B.; Yuan, B.; Wang, X.; Li, J. Optimizing the free radical content of graphene oxide by controlling its reduction. Carbon 2017, 116, 703-12.

50. Gao, X.; Jang, J.; Nagase, S. Hydrazine and thermal reduction of graphene oxide: reaction mechanisms, product structures, and reaction design. J. Phys. Chem. C. 2010, 114, 832-42.

51. Lei, Z.; Zhang, J.; Zhang, L. L.; Kumar, N. A.; Zhao, X. S. Functionalization of chemically derived graphene for improving its electrocapacitive energy storage properties. Energy. Environ. Sci. 2016, 9, 1891-930.

52. Pu, X.; Zhao, D.; Fu, C.; et al. Understanding and calibration of charge storage mechanism in cyclic voltammetry curves. Angew. Chem. Int. Ed. 2021, 60, 21310-8.

53. Nagarani, S.; Sasikala, G.; Yuvaraj, M.; Balachandran, S.; Dhilip Kumar, R.; Kumar, M. Cost effective, metal free reduced graphene oxide sheet for high performance electrochemical capacitor application. Mater. Sci. Eng. B. 2022, 284, 115852.

54. Le, V. T.; Ryu, H.; Han, S. A.; et al. Simultaneous enhancement of specific capacitance and potential window of graphene-based electric double-layer capacitors using ferroelectric polymers. J. Power. Sources. 2021, 507, 230268.

55. Sun, X.; Lu, H.; Rufford, T. E.; et al. A flexible graphene-carbon fiber composite electrode with high surface area-normalized capacitance. Sustainable. Energy. Fuels. 2019, 3, 1827-32.

56. Wu, Q.; He, T.; Zhang, Y.; et al. Cyclic stability of supercapacitors: materials, energy storage mechanism, test methods, and device. J. Mater. Chem. A. 2021, 9, 24094-147.

57. Wu, Z.; Yang, S.; Zhang, L.; Wagner, J. B.; Feng, X.; Müllen, K. Binder-free activated graphene compact films for all-solid-state micro-supercapacitors with high areal and volumetric capacitances. Energy. Storage. Mater. 2015, 1, 119-26.

58. Ramadoss, A.; Yoon, K.; Kwak, M.; Kim, S.; Ryu, S.; Jang, J. Fully flexible, lightweight, high performance all-solid-state supercapacitor based on 3-Dimensional-graphene/graphite-paper. J. Power. Sources. 2017, 337, 159-65.

59. Xiong, Z.; Liao, C.; Han, W.; Wang, X. Mechanically tough large-area hierarchical porous graphene films for high-performance flexible supercapacitor applications. Adv. Mater. 2015, 27, 4469-75.

60. Elgrishi, N.; Rountree, K. J.; Mccarthy, B. D.; Rountree, E. S.; Eisenhart, T. T.; Dempsey, J. L. A practical beginner’s guide to cyclic voltammetry. J. Chem. Educ. 2018, 95, 197-206.

Energy Materials
ISSN 2770-5900 (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/