REFERENCES

1. Niu, Y.; Teng, X.; Gong, S.; Xu, M.; Sun, S. G.; Chen, Z. Engineering two-phase bifunctional oxygen electrocatalysts with tunable and synergetic components for flexible Zn-air batteries. Nano-Micro. Lett. 2021, 13, 126.

2. Bin, D.; Yang, B.; Li, C.; et al. In situ growth of nife alloy nanoparticles embedded into N-doped bamboo-like carbon nanotubes as a bifunctional electrocatalyst for Zn-air batteries. ACS. Appl. Mater. Interfaces. 2018, 10, 26178-87.

3. Niu, H. J.; Zhang, L.; Feng, J. J.; Zhang, Q. L.; Huang, H.; Wang, A. J. Graphene-encapsulated cobalt nanoparticles embedded in porous nitrogen-doped graphitic carbon nanosheets as efficient electrocatalysts for oxygen reduction reaction. J. Colloid. Interface. Sci. 2019, 552, 744-51.

4. Gebremariam, T. T.; Chen, F.; Jin, Y.; Wang, Q.; Wang, J.; Wang, J. Bimetallic NiCo/CNF encapsulated in a N-doped carbon shell as an electrocatalyst for Zn-air batteries and water splitting. Catal. Sci. Technol. 2019, 9, 2532-42.

5. Li, C.; Wu, M.; Liu, R. High-performance bifunctional oxygen electrocatalysts for zinc-air batteries over mesoporous Fe/Co-N-C nanofibers with embedding FeCo alloy nanoparticles. Appl. Catal. B. Environ. 2019, 244, 150-8.

6. Wu, X.; Yan, Q.; Wang, H.; et al. Heterostructured catalytic materials as advanced electrocatalysts: classification, synthesis, characterization, and application. Adv. Funct. Mater. 2024, 34, 2404535.

7. Liu, Y.; Zhu, Q.; Zhang, L.; Xu, Q.; Li, X.; Hu, G. Nickel-induced charge transfer in semicoherent Co-Ni/Co6Mo6C heterostructures for reversible oxygen electrocatalysis. J. Colloid. Interface. Sci. 2024, 674, 361-9.

8. Yang, L.; He, R.; Botifoll, M.; et al. Enhanced oxygen evolution and zinc-air battery performance via electronic spin modulation in heterostructured catalysts. Adv. Mater. 2024, 36, 2400572.

9. Zhu, J.; Xiao, M.; Li, G.; et al. A Triphasic bifunctional oxygen electrocatalyst with tunable and synergetic interfacial structure for rechargeable Zn‐air batteries. Adv. Energy. Mater. 2020, 10, 1903003.

10. Zhang, F.; Chen, L.; Zhang, Y.; et al. Engineering Co/CoO heterojunctions stitched in mulberry-like open-carbon nanocages via a metal-organic frameworks In-situ sacrificial strategy for performance-enhanced zinc-air batteries. Chem. Eng. J. 2022, 447, 137490.

11. Li, K.; Cheng, R.; Xue, Q.; Zhao, T.; Wang, F.; Fu, C. Construction of a Co/MnO mott-schottky heterostructure to achieve interfacial synergy in the oxygen reduction reaction for aluminum-air batteries. ACS. Appl. Mater. Interfaces. , 2023, 9150-9.

12. Luo, L.; Liu, Y.; Chen, S.; et al. FeNiCo|MnGaOx heterostructure nanoparticles as bifunctional electrocatalyst for Zn-air batteries. Small 2024, 20, 2308756.

13. He, R.; Yang, L.; Zhang, Y.; et al. A CrMnFeCoNi high entropy alloy boosting oxygen evolution/reduction reactions and zinc-air battery performance. Energy. Storage. Mater. 2023, 58, 287-98.

14. Xiao, T.; Sun, C.; Wang, R. Electrodeposited CrMnFeCoNi oxy-carbide film and effect of selective dissolution of Cr on oxygen evolution reaction. J. Mater. Sci. Technol. 2024, 200, 176-84.

15. Hoffman, A. S.; Greaney, M.; Finzel, J.; et al. Elucidation of puzzling questions regarding the CrOx/Al2O3 catalyst I. X-ray absorption spectroscopy aided identification of the nature of the chromium oxide species in the CrOx/Al2O3 dehydrogenation catalyst system. Appl. Catal. A. Gen. 2023, 660, 119187.

16. Peterson, M. L.; Brown, G. E.; Parks, G. A.; Stein, C. L. Differential redox and sorption of Cr (III/VI) on natural silicate and oxide minerals: EXAFS and XANES results. Geochim. Cosmochim. Acta. 1997, 61, 3399-412.

17. Song, X. Z.; Zhao, Y. H.; Zhang, F.; et al. Coupling plant polyphenol coordination assembly with Co(OH)2 to enhance electrocatalytic performance towards oxygen evolution reaction. Nanomaterials 2022, 12, 3972.

18. Bumajdad, A.; Al-Ghareeb, S.; Madkour, M.; Sagheer, F. A. Non-noble, efficient catalyst of unsupported α-Cr2O3 nanoparticles for low temperature CO oxidation. Sci. Rep. 2017, 7, 14788.

19. Wang, Z.; Xi, L.; Yang, Y.; et al. Spin-dependent transport properties of CrO2 micro rod. Nano-Micro. Lett. 2014, 6, 365-71.

20. Menezes, P. W.; Indra, A.; Gutkin, V.; Driess, M. Boosting electrochemical water oxidation through replacement of Oh Co sites in cobalt oxide spinel with manganese. Chem. Commun. 2017, 53, 8018-21.

21. Zhao, X.; Lu, M.; Zhang, G.; et al. Boosting ORR activity via bidirectional regulation of the electronic structure by coupling MnO/Mn3O4 composite materials with N-doped carbon. ACS. Sustain. Chem. Eng. 2024, 12, 8425-35.

22. Biesinger, M. C.; Payne, B. P.; Grosvenor, A. P.; Lau, L. W.; Gerson, A. R.; Smart, R. S. Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe, Co and Ni. Appl. Surf. Sci. 2011, 257, 2717-30.

23. Cheng, M.; Fan, H.; Song, Y.; Cui, Y.; Wang, R. Interconnected hierarchical NiCo2O4 microspheres as high-performance electrode materials for supercapacitors. Dalton. Trans. 2017, 46, 9201-9.

24. Grosvenor, A. P.; Biesinger, M. C.; Smart, R. S. C.; Gerson, A. R. The influence of final-state effects on XPS spectra from first-row transition-metals. Hard. X-ray. Photoelectron. Spectroscopy. , Woicik J, editor; Springer Series in Surface Sciences, Vol.59; Cham, Springer International Publishing; 2016. pp. 217-62.

25. Chen, M.; Liu, D.; Qiao, L.; et al. In-situ/operando Raman techniques for in-depth understanding on electrocatalysis. Chem. Eng. J. 2023, 461, 141939.

26. Wei, J.; Xia, D.; Wei, Y.; Zhu, X.; Li, J.; Gan, L. Probing the oxygen reduction reaction intermediates and dynamic active site structures of molecular and pyrolyzed Fe-N-C electrocatalysts by in situ raman spectroscopy. ACS. Catal. 2022, 12, 7811-20.

27. Balasubramanian, M.; Mcbreen, J.; Davidson, I. J.; Whitfield, P. S.; Kargina, I. In situ X-ray absorption study of a layered manganese-chromium oxide-based cathode material. J. Electrochem. Soc. 2002, 149, A176.

28. Li, L.; Cao, X.; Huo, J.; et al. High valence metals engineering strategies of Fe/Co/Ni-based catalysts for boosted OER electrocatalysis. J. Energy. Chem. 2023, 76, 195-213.

29. Bo, X.; Hocking, R. K.; Zhou, S.; et al. Capturing the active sites of multimetallic (oxy)hydroxides for the oxygen evolution reaction. Energy. Environ. Sci. 2020, 13, 4225-37.

30. Radinger, H. Operando Raman spectroscopy of transition metal oxide catalysts in regard to the oxygen evolution reaction. MS thesis,Technische Universität Darmstadt, 2023.

31. Chang, S.; Cheng, C.; Cheng, P.; Huang, C.; Lu, S. Pulse electrodeposited FeCoNiMnW high entropy alloys as efficient and stable bifunctional electrocatalysts for acidic water splitting. Chem. Eng. J. 2022, 446, 137452.

32. Huang, C.; Lin, Y.; Chiang, C.; et al. Atomic scale synergistic interactions lead to breakthrough catalysts for electrocatalytic water splitting. Appl. Catal. B. Environ. 2023, 320, 122016.

33. Moysiadou, A.; Lee, S.; Hsu, C. S.; Chen, H. M.; Hu, X. Mechanism of oxygen evolution catalyzed by cobalt oxyhydroxide: cobalt superoxide species as a key intermediate and dioxygen release as a rate-determining step. J. Am. Chem. Soc. 2020, 142, 11901-14.

34. Vermeersch, E.; Košek, F.; De, Grave., J.; Jehlička, J.; Vandenabeele, P.; Rousaki, A. Identification of tunnel structures in manganese oxide minerals using micro‐Raman spectroscopy. J. Raman. Spectrosc. 2023, 54, 1201-12.

Energy Materials
ISSN 2770-5900 (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/