REFERENCES

1. Shang, J.; Wang, Y.; Chen, S.; Zhang, J. Solvation structure regulation of zinc ions with nitrogen-heterocyclic additives for advanced batteries. Nanoscale 2025, 17, 2121-9.

2. Tang, L.; Peng, H.; Kang, J.; et al. Zn-based batteries for sustainable energy storage: strategies and mechanisms. Chem. Soc. Rev. 2024, 53, 4877-925.

3. Du, M.; Miao, Z.; Li, H.; Sang, Y.; Liu, H.; Wang, S. Strategies of structural and defect engineering for high-performance rechargeable aqueous zinc-ion batteries. J. Mater. Chem. A. 2021, 9, 19245-81.

4. Mao, Y.; Zhao, B.; Bai, J.; Wang, P.; Zhu, X.; Sun, Y. Recent progress in critical electrode and electrolyte materials for flexible zinc-ion batteries. Nanoscale 2024, 16, 5042-59.

5. Zhu, Y.; Liang, G.; Cui, X.; et al. Engineering hosts for Zn anodes in aqueous Zn-ion batteries. Energy. Environ. Sci. 2024, 17, 369-85.

6. Lv, W.; Liu, J.; Shen, Z.; Li, X.; Xu, C. In situ hybridization of biomass carbon with layered hydroxide for dendrite-free aqueous zinc batteries. eScience 2025, 19, 100410.

7. Li, Y.; Musgrave, C. B.; Yang, M. Y.; et al. The Zn deposition mechanism and pressure effects for aqueous Zn batteries: a combined theoretical and experimental study. Adv. Energy. Mater. 2023, 14, 2303047.

8. Ding, T.; Yu, S.; Feng, Z.; Song, B.; Zhang, H.; Lu, K. Tunable Zn2+ de-solvation behavior in MnO2 cathodes via self-assembled phytic acid monolayers for stable aqueous Zn-ion batteries. Nanoscale 2024, 16, 21317-25.

9. Jin, Y.; Jin, K.; Ji, W.; et al. Fabrication of a robust zinc powder anode via facile integration of copper nanopowder as a functional conductive medium. Adv. Funct. Mater. 2025, 35, 2418503.

10. Wu, L.; Zhu, X.; Peng, Z.; et al. Electrode process regulation for high-efficiency zinc metal anodes. J. Mater. Chem. A. 2024, 12, 30169-89.

11. Li, L.; Jia, S.; Cao, M.; Ji, Y.; Qiu, H.; Zhang, D. Research progress on modified Zn substrates in stabilizing zinc anodes. J. Mater. Chem. A. 2023, 11, 14568-85.

12. Liu, H.; Ma, Y.; Cao, B.; Zhu, Q.; Xu, B. Recent progress of MXenes in aqueous zinc-ion batteries. Acta. Phy. Chim. Sin. 2023, 39, 2210027.

13. Wu, B.; Guo, B.; Chen, Y.; et al. High zinc utilization aqueous zinc ion batteries enabled by 3D printed graphene arrays. Energy. Stor. Mater. 2023, 54, 75-84.

14. Yin, Y.; Wang, S.; Zhang, Q.; et al. Dendrite-free zinc deposition induced by tin-modified multifunctional 3D host for stable zinc-based flow battery. Adv. Mater. 2020, 32, e1906803.

15. Yang, J.; Weng, C.; Sun, P.; et al. Comprehensive regulation strategies for gel electrolytes in aqueous zinc-ion batteries. Coord. Chem. Rev. 2025, 530, 216475.

16. Ye, B.; Wu, F.; Zhao, R.; et al. Electrolyte regulation toward cathodes with enhanced-performance in aqueous zinc ion batteries. Adv. Mater. 2025, 37, e2501538.

17. Zhang, Y.; Chen, M.; Lu, J.; et al. Anisotropic and anti-freezing cellulose hydrogel electrolyte with aligned channels stabilizing Zn metal anode. Chem. Eng. J. 2025, 506, 159950.

18. Qi, Y.; Xia, Y. Electrolyte regulation strategies for improving the electrochemical performance of aqueous zinc-ion battery cathodes. Acta. Phy. Chim. Sin. 2022, 39, 2205045.

19. Zhang, R.; Liao, Z.; Fan, Y.; et al. Multifunctional hydroxyurea additive enhances high stability and reversibility of zinc anodes. J. Mater. Chem. A. 2025, 13, 5987-99.

20. Kim, H. J.; Kim, S.; Yu, J. H.; Lim, J.; Yashiro, H.; Myung, S. Unlocking long-term stability: electrolyte additives for suppressing zinc dendrite growth in aqueous zinc metal batteries. Chem. Eng. J. 2025, 506, 160017.

21. Yang, S.; Zhao, Y.; Zhi, C. Insights into the role of electrolyte additives for stable Zn anodes. Energy. Mater. 2025, 5, 500021.

22. Chen, X.; Li, W.; Hu, S.; et al. Polyvinyl alcohol coating induced preferred crystallographic orientation in aqueous zinc battery anodes. Nano. Energy. 2022, 98, 107269.

23. Zhang, H.; Li, S.; Xu, L.; et al. High‐yield carbon dots interlayer for ultra-stable zinc batteries. Adv. Energy. Mater. 2022, 12, 2200665.

24. Li, Y.; Yang, S.; Du, H.; et al. A stable fluoride-based interphase for a long cycle Zn metal anode in an aqueous zinc ion battery. J. Mater. Chem. A. 2022, 10, 14399-410.

25. Song, B.; Lu, Q.; Wang, X.; Xiong, P. Promoted de-solvation effect and dendrite-free Zn deposition enabled by in-situ formed interphase layer for high-performance zinc-ion batteries. Energy. Mater. 2025, 5, 500031.

26. Han, D.; Wu, S.; Zhang, S.; et al. A corrosion-resistant and dendrite-free zinc metal anode in aqueous systems. Small 2020, 16, e2001736.

27. Lu, H.; Jin, Q.; Jiang, X.; Dang, Z. M.; Zhang, D.; Jin, Y. Vertical crystal plane matching between AgZn3 (002) and Zn (002) achieving a dendrite-free zinc anode. Small 2022, 18, e2200131.

28. Zhou, X.; Cao, P.; Wei, A.; et al. Driving the interfacial ion-transfer kinetics by mesoporous TiO2 spheres for high-performance aqueous Zn-ion batteries. ACS. Appl. Mater. Interfaces. 2021, 13, 8181-90.

29. Kim, J. Y.; Liu, G.; Shim, G. Y.; Kim, H.; Lee, J. K. Functionalized Zn@ZnO hexagonal pyramid array for dendrite-free and ultrastable zinc metal anodes. Adv. Funct. Mater. 2020, 30, 2004210.

30. Wang, R.; Wu, Q.; Wu, M.; et al. Interface engineering of Zn meal anodes using electrochemically inert Al2O3 protective nanocoatings. Nano. Res. 2022, 15, 7227-33.

31. Wang, Y.; Lin, X.; Wang, L.; Yang, Y.; Zhang, Y.; Pan, A. Tailoring the crystal‐chemical states of water molecules in sepiolite for superior coating layers of Zn metal anodes. Adv. Funct. Mater. 2023, 33, 2211088.

32. Zeng, Y.; Zhang, X.; Qin, R.; et al. Dendrite-free zinc deposition induced by multifunctional CNT frameworks for stable flexible Zn-ion batteries. Adv. Mater. 2019, 31, e1903675.

33. Zhou, J.; Xie, M.; Wu, F.; et al. Ultrathin surface coating of nitrogen-doped graphene enables stable zinc anodes for aqueous zinc-ion batteries. Adv. Mater. 2021, 33, e2101649.

34. Wang, G.; He, P.; Fan, L. Z. Asymmetric polymer electrolyte constructed by metal-organic framework for solid‐state, dendrite‐free lithium metal battery. Adv. Funct. Mater. 2020, 31, 2007198.

35. Yang, H.; Zhu, K.; Xie, W.; et al. MOF nanosheets as ion carriers for self-optimized zinc anodes. Energy. Environ. Sci. 2023, 16, 4549-60.

36. Zhao, Z.; Zhao, J.; Hu, Z.; et al. Long-life and deeply rechargeable aqueous Zn anodes enabled by a multifunctional brightener-inspired interphase. Energy. Environ. Sci. 2019, 12, 1938-49.

37. Cai, X.; Tian, W.; Zhang, Z.; et al. Polymer coating with balanced coordination strength and ion conductivity for dendrite-free zinc anode. Adv. Mater. 2024, 36, e2307727.

38. Xie, K.; Ren, K.; Wang, Q.; et al. In situ construction of zinc-rich polymeric solid-electrolyte interface for high-performance zinc anode. eScience 2023, 3, 100153.

39. Geng, Y.; Pan, L.; Peng, Z.; et al. Electrolyte additive engineering for aqueous Zn ion batteries. Energy. Stor. Mater. 2022, 51, 733-55.

40. Zong, Q.; Lv, B.; Liu, C.; et al. Dendrite-free and highly stable Zn metal anode with BaTiO3/P(VDF-TrFE) coating. ACS. Energy. Lett. 2023, 8, 2886-96.

41. Tang, Y.; Liu, C.; Zhu, H.; et al. Ion-confinement effect enabled by gel electrolyte for highly reversible dendrite-free zinc metal anode. Energy. Stor. Mater. 2020, 27, 109-16.

42. Li, C.; Xie, X.; Liu, H.; et al. Integrated 'all-in-one' strategy to stabilize zinc anodes for high-performance zinc-ion batteries. Natl. Sci. Rev. 2022, 9, nwab177.

43. Fan, W.; Sun, Z.; Yuan, Y.; et al. High cycle stability of Zn anodes boosted by an artificial electronic-ionic mixed conductor coating layer. J. Mater. Chem. A. 2022, 10, 7645-52.

44. Wang, Y.; Xu, X.; Yin, J.; et al. MoS2 - mediated epitaxial plating of Zn metal anodes. Adv. Mater. 2023, 35, e2208171.

45. Bhoyate, S.; Mhin, S.; Jeon, J. E.; Park, K.; Kim, J.; Choi, W. Stable and high-energy-density Zn-ion rechargeable batteries based on a MoS2-coated Zn anode. ACS. Appl. Mater. Interfaces. 2020, 12, 27249-57.

46. Malagurski, I.; Levic, S.; Pantic, M.; et al. Synthesis and antimicrobial properties of Zn-mineralized alginate nanocomposites. Carbohydr. Polym. 2017, 165, 313-21.

47. Zhu, Z.; Mosallanezhad, A.; Sun, D.; et al. Applications of MoS2 in Li-O2 batteries: development and challenges. Energy. Fuels. 2021, 35, 5613-26.

48. Orazem, M. E.; Tribollet, B. Electrochemical impedance spectroscopy. John Wiley & Sons, 2017. Available from: https://books.google.com.tw/books?hl=zh-CN&lr=&id=KnNdDwAAQBAJ&oi=fnd&pg=PR23&ots=nh1yNMJdDT&sig=rJwmIeqf-6E4Q602jveii8ngUTc&redir_esc=y#v=onepage&q&f=false. [Last accessed on 15 Jan 2026].

49. Bruce, P. G.; Evans, J.; Vincent, C. A.; et al. onductivity and transference number measurements on polymer electrolytes. Solid. State. Ion. 1988, 28-30, 918-22.

51. Martin, R. M. Electronic structure: basic theory and practical methods. Cambridge: Cambridge University Press, 2004. Available from: https://books.google.com.tw/books?id=wvXvDwAAQBAJ&printsec=frontcover&hl=zh-CN#v=onepage&q&f=false. [Last accessed on 15 Jan 2026].

52. VandeVondele, J.; Hutter, J. Gaussian basis sets for accurate calculations on molecular systems in gas and condensed phases. J. Chem. Phys. 2007, 127, 114105.

53. Hartwigsen, C.; Goedecker, S.; Hutter, J. Relativistic separable dual-space Gaussian pseudopotentials from H to Rn. Phys. Rev. B. 1998, 58, 3641-62.

54. Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010, 132, 154104.

55. Wang, Y.; Xu, Y.; Cheng, C.; Zhang, B.; Zhang, B.; Yu, Y. Phase‐regulated active hydrogen behavior on molybdenum disulfide for electrochemical nitrate‐to‐ammonia conversion. Angew. Chem. Int. Ed. 2023, 136, e202315109.

56. He, P.; Huang, J. Detrimental effects of surface imperfections and unpolished edges on the cycling stability of a zinc foil anode. ACS. Energy. Lett. 2021, 6, 1990-5.

57. Zhang, X.; Hu, L.; Zhou, K.; et al. Fully printed and sweat-activated micro-batteries with lattice-match Zn/MoS2 anode for long-duration wearables. Adv. Mater. 2024, 36, e2412844.

58. Zeng, Z.; Zeng, Y.; Sun, L.; et al. Correction: Long cyclic stability of acidic aqueous zinc-ion batteries achieved by atomic layer deposition: the effect of the induced orientation growth of the Zn anode. Nanoscale 2023, 15, 2435.

59. He, H.; Liu, J. Suppressing Zn dendrite growth by molecular layer deposition to enable long-life and deeply rechargeable aqueous Zn anodes. J. Mater. Chem. A. 2020, 8, 22100-10.

60. Xie, Z.; Yuan, Y.; Yao, Z.; Zhu, M.; Guo, S.; Du, P. Regulating horizontal lamellar Zn to uniformly deposit under and on the hollow porous carbon nanosphere coating for dendrite-free metal Zn anode. Chem. Eng. J. 2024, 484, 149601.

61. Ramos, M.; López-Galán, O. A.; Polanco, J.; José-Yacamán, M. On the electronic structure of 2H-MoS2: correlating DFT calculations and in-situ mechanical bending on TEM. Materials 2022, 15, 6732.

62. Lee, C. H.; Zhang, Y.; Johnson, J. M.; et al. Molecular beam epitaxy of GaN on 2H-MoS2. Appl. Phys. Lett. 2020, 117, 123102.

63. Huang, Z.; Li, Z.; Wang, Y.; et al. Regulating Zn(002) deposition toward long cycle life for Zn metal batteries. ACS. Energy. Lett. 2022, 8, 372-80.

64. Cao, C.; Lu, H.; Yang, Z.; et al. Feather-effect-inspired superhydrophobic and zincophilic strategy for ultrastable Zn metal anodes. Nano. Lett. 2025, 25, 14384-94.

65. Liu, D.; Meng, S.; Chen, Y.; et al. Seed-promoted patch-like deposition for dynamic protection and ion transport synergy to achieve stable zinc-powder anodes. Small 2025, 21, e06972.

66. Zhao, X.; Gong, Z.; Wang, G.; et al. Preferential texture of surface coating on Zn anodes for advanced aqueous batteries: small change but big gain. Angew. Chem. Int. Ed. 2025, 64, e202509952.

67. Lee, W. S. V.; Xiong, T.; Wang, X.; Xue, J. Unraveling MoS2 and transition metal dichalcogenides as functional zinc-ion battery cathode: a perspective. Small. Methods. 2021, 5, e2000815.

68. Liang, H.; Cao, Z.; Ming, F.; et al. Aqueous zinc-ion storage in MoS2 by tuning the intercalation energy. Nano. Lett. 2019, 19, 3199-206.

69. Xu, W.; Sun, C.; Zhao, K.; et al. Defect engineering activating (Boosting) zinc storage capacity of MoS2. Energy. Stor. Mater. 2019, 16, 527-34.

70. Jia, D.; Shen, Z.; Zhou, W.; et al. Vertically stacked heterostructure in MoS2/rGO to accelerate ion diffusion kinetics for aqueous zinc ion batteries. Chem. Eng. J. 2024, 500, 156945.

71. Xin, C.; Yang, D.; Setyawan, H.; Zhang, Y.; Xiong, T. Engineering defects in MoS2 cathodes for high-performance aqueous zinc-ion batteries. J. Energy. Stor. 2025, 134, 118115.

72. Yuan, W.; Yuan, Y.; Wu, J.; et al. Dendrite-free Zn anode endowed by facile Al-complex coating for long-cycled aqueous Zn-ion batteries. ACS. Appl. Mater. Interfaces. 2023, 15, 53540-8.

Energy Materials
ISSN 2770-5900 (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/