REFERENCES
1. Duan, J.; Tang, X.; Dai, H.; et al. Building safe lithium-ion batteries for electric vehicles: a review. Electrochem. Energ. Rev. 2020, 3, 1-42.
2. Wu, J.; Zheng, Y.; Zhang, P.; et al. A rocking-chair rechargeable seawater battery. Research 2024, 7, 0461.
3. Tang, S.; Sun, F.; Wang, H.; et al. Revealing the degradation mechanism of lithium-ion batteries for electric aircraft. Adv. Mater. 2025, 37, 2502363.
4. Yang, Y.; Zhao, J. Wadsley-roth crystallographic shear structure niobium-based oxides: promising anode materials for high-safety lithium-ion batteries. Adv. Sci. 2021, 8, 2004855.
5. Geng, C.; Zhang, P.; Wu, J. M.; Qin, J.; Wen, W. Lattice expanded titania as an excellent anode for an aqueous zinc-ion battery enabled by a highly reversible H+-promoted Zn2+ intercalation. ACS. Nano. 2024, 18, 33119-30.
6. Chen, X.; Liu, J.; Li, W.; et al. Permselective covalent organic framework membrane as self-extinguishing separator for high-safety lithium-ion battery. Angew. Chem. Int. Ed. 2025, 64, e202512591.
7. Yuan, K.; Lin, Y.; Li, X.; et al. High-safety anode materials for advanced lithium-ion batteries. Energy. Environ. Mater. 2024, 7, e12759.
8. Zhang, X.; Sun, J.; Cheng, Z.; Wu, M.; Guo, Z.; Zhang, H. Design, perspective, and challenge of niobium-based anode materials for high-energy alkali metal-ion batteries. Adv. Funct. Materials. 2024, 34, 2405392.
9. Griffith, K. J.; Seymour, I. D.; Hope, M. A.; et al. Ionic and electronic conduction in TiNb2O7. J. Am. Chem. Soc. 2019, 141, 16706-25.
10. Zhang, Y.; Kang, C.; Zhao, W.; et al. Crystallographic engineering to reduce diffusion barrier for enhanced intercalation pseudocapacitance of TiNb2O7 in fast-charging batteries. Energy. Storage. Mater. 2022, 47, 178-86.
11. Huang, J.; Yang, Q.; Yang, W.; et al. Voltage regulation via covalent bond strength to increase energy density for safe fast-charging lithium-ion batteries. Adv. Funct. Mater. 2025, 35, 2422105.
12. Sieffert, J. M.; Lang, C. J.; Bazylevych, S.; Jia, S.; Mccalla, E. The Nb-Ti-W-O system as safe high-power anodes for Li-ion batteries. J. Mater. Chem. A. 2024, 12, 1429-37.
13. Zhou, Y.; Ding, Y.; Chen, Y.; et al. Thermal degradation of lithium-ion battery cathodes: a machine learning prediction of stability and safety. Energy. Mater. 2025, 5, 500077.
14. Zhang, Y.; Wang, Y.; Zhao, W.; et al. Delocalized electronic engineering of TiNb2O7 enables low temperature capability for high-areal-capacity lithium-ion batteries. Nat. Commun. 2024, 15, 6299.
15. Yu, G.; Huang, J.; Bai, X.; et al. Engineering of cerium modified TiNb2O7 nanoparticles for low-temperature lithium-ion battery. Small 2024, 20, 2308858.
16. Wei, C.; Zhang, Y.; Tian, Y.; et al. Design of safe, long-cycling and high-energy lithium metal anodes in all working conditions: progress, challenges and perspectives. Energy. Storage. Mater. 2021, 38, 157-89.
17. Gao, F.; Yang, S.; Zhang, Z.; et al. Synergistic internal and external modification of TiNb2O7 through ion doping and interfacial engineering for high-performance lithium-ion batteries. Carbon 2025, 238, 120217.
18. Mao, B.; Guo, D.; Qin, J.; Meng, T.; Wang, X.; Cao, M. Solubility-parameter-guided solvent selection to initiate ostwald ripening for interior space-tunable structures with architecture-dependent electrochemical performance. Angew. Chem. Int. Ed. 2018, 57, 446-50.
19. Jiang, M.; Hu, Y.; Mao, B.; et al. Strain-regulated Gibbs free energy enables reversible redox chemistry of chalcogenides for sodium ion batteries. Nat. Commun. 2022, 13, 5588.
20. Huang, L.; Huang, Y.; Wang, J.; et al. Synergistic dual-carbon networks bridged Mn-doped TiNb2O7 anode for fast-charging lithium-ion batteries. ACS. Appl. Mater. Interfaces. 2025, 17, 53659-69.
21. Li, S. Q.; Wang, Z.; Zheng, X.; et al. Biomimetic sandwich-structured tubular ion pump arrays for lithium metal batteries. J. Am. Chem. Soc. 2025, 147, 25883-95.
22. Sun, X.; Qin, C.; Zhao, B.; et al. A cation and anion dual-doping strategy in novel Li-rich Mn-based cathode materials for high-performance Li metal batteries. Energy. Storage. Mater. 2024, 70, 103559.
23. Tian, K.; Wang, Z.; Di, H.; et al. Superimposed effect of La doping and structural engineering to achieve oxygen-deficient TiNb2O7 for ultrafast Li-Ion storage. ACS. Appl. Mater. Interfaces. 2022, 14, 10478-88.
24. Huang, S.; Qin, J.; Yu, X.; et al. Material hardening caused by lattice distortion enables good cycling stability of entropy-increased energy-storage materials. Adv. Energy. Mater. 2025, 15, 2502286.
25. Wu, H.; Wei, L.; Li, W.; et al. Highly conductive carbon/carbon composites as advanced multifunctional anode materials for structural lithium-ion batteries. Adv. Funct. Mater. 2024, 34, 2403729.
26. Wu, Y.; Liu, D.; Qu, D.; et al. Porous oxygen-deficient TiNb2O7 spheres wrapped by MXene as high-rate and durable anodes for liquid and all-solid-state lithium-ion batteries. Chem. Eng. J. 2022, 438, 135328.
27. Yang, Y.; Yue, Y.; Wang, L.; et al. Facile synthesis of mesoporous TiNb2O7/C microspheres as long-life and high-power anodes for lithium-ion batteries. Int. J. Hydrogen. Energy. 2020, 45, 12583-92.
28. Ho, V.; Huynh, T. N.; Pham, T. H.; et al. Dry basal plane graphene wrappings on spherical nickel-rich oxide layered particles for lithium-ion batteries. J. Energy. Chem. 2025, 104, 10-9.
29. Folorunso, O.; Sadiku, R.; Hamam, Y.; Kupolati, W. Sustainable metal oxides and their composites for lithium-ion batteries and multifunctional applications. J. Mater. Sci. 2025, 60, 12347-84.
30. Guo, W.; Liu, S.; Guan, X.; Zhang, X.; Liu, X.; Luo, J. Mixed ion and electron-conducting scaffolds for high-rate lithium metal anodes. Adv. Energy. Mater. 2019, 9, 1900193.
31. Sun, H.; Mei, L.; Liang, J.; et al. Three-dimensional holey-graphene/niobia composite architectures for ultrahigh-rate energy storage. Science 2017, 356, 599-604.
32. Xu, W.; Xu, Y.; Grzimek, V.; et al. Insights into the kinetics-morphology relationship of 1-, 2-, and 3D TiNb2O7 anodes for Li-ion storage. Nano. Res. 2024, 17, 2770-80.
33. Du, H.; Wang, Y.; Kang, Y.; et al. Side reactions/changes in lithium-ion batteries: mechanisms and strategies for creating safer and better batteries. Adv. Mater. 2024, 36, 2401482.
34. Wen, W.; Geng, C.; Li, X.; et al. A membrane-free rechargeable seawater battery unlocked by lattice engineering. Adv. Mater. 2024, 36, 2312343.
35. Chen, G.; Liu, X.; Liu, Z.; et al. Novel “sandwich” configuration with ALD-coating layers on electrode/electrolyte interfaces for durable all-solid-state lithium metal batteries with high-voltage cathodes. Energy. Mater. 2025, 5, 500064.
36. Park, S. K.; Kim, S.; He, R.; et al. Synergistic lithium alloying and plating in 3D Cu/CNT/Sn electrodes for stable lithium metal batteries. Small 2025, 21, e2501292.
37. Zhang, S.; Xiao, S.; Li, D.; et al. Commercial carbon cloth: an emerging substrate for practical lithium metal batteries. Energy. Storage. Mater. 2022, 48, 172-90.
38. Yang, Y.; Li, Y.; Liu, K.; et al. Hierarchical porous TiNb2O7@N-doped carbon microspheres as superior anode materials for lithium ion storage. Int. J. Hydrogen. Energy. 2021, 46, 3425-36.
39. Wang, J.; Paul, T.; Chandan, P.; et al. Rate performance enhancement in lithium-ion batteries using TiNb2-xAlxO7 anodes with self-generated protective layers. Chem. Eng. J. 2025, 504, 158464.
40. Yao, Z.; Xia, X.; Zhang, S.; et al. Oxygen defect boosted N-doped Ti2Nb10O29 anchored on core-branch carbon skeleton for both high-rate liquid & solid-state lithium ion batteries. Energy. Storage. Mater. 2020, 25, 555-62.
41. Lou, S.; Cheng, X.; Zhao, Y.; et al. Superior performance of ordered macroporous TiNb2O7 anodes for lithium ion batteries: understanding from the structural and pseudocapacitive insights on achieving high rate capability. Nano. Energy. 2017, 34, 15-25.
42. Oh, Y. J.; Park, J. H.; Park, J. S.; et al. Fast-chargeable N-doped multi-oriented graphitic carbon as a Li-intercalation compound. Energy. Storage. Mater. 2022, 44, 416-24.
43. Chung, W.; Bang, J. H. Carbon-doped TiNb2O7 suppresses amorphization-induced capacity fading. ACS. Appl. Mater. Interfaces. 2022, 14, 19365-75.
44. Cui, P.; Zhang, P.; Chen, X.; et al. Oxygen defect and Cl--doped modulated TiNb2O7 compound with high rate performance in lithium-ion batteries. ACS. Appl. Mater. Interfaces. 2023, 15, 43745-55.
45. Shen, S.; Deng, S.; Zhong, Y.; et al. Binder-free carbon fiber/TiNb2O7 composite electrode as superior high-rate anode for lithium ions batteries. Chin. Chem. Lett. 2017, 28, 2219-22.
46. Zhong, X.; Huang, T.; Liang, J.; et al. Porous TiNb2O7@N-C as anode materials for lithium-ion batteries with ultrahigh-rate performance. J. Phys. Chem. C. 2021, 125, 23960-7.






