REFERENCES
1. Xia, S.; Wu, X.; Zhang, Z.; Cui, Y.; Liu, W. Practical challenges and future perspectives of all-solid-state lithium-metal batteries. Chem 2019, 5, 753-85.
2. An, Y.; Han, X.; Liu, Y.; et al. Progress in solid polymer electrolytes for lithium-ion batteries and beyond. Small 2022, 18, e2103617.
3. He, M.; Hector, L. G.; Dai, F.; et al. Industry needs for practical lithium-metal battery designs in electric vehicles. Nat. Energy. 2024, 9, 1199-205.
4. Cheng, X. B.; Zhang, R.; Zhao, C. Z.; Zhang, Q. Toward safe lithium metal anode in rechargeable batteries: a review. Chem. Rev. 2017, 117, 10403-73.
5. Fenton, D.; Parker, J.; Wright, P. Complexes of alkali metal ions with poly(ethylene oxide). Polymer 1973, 14, 589.
6. Mindemark, J.; Lacey, M. J.; Bowden, T.; Brandell, D. Beyond PEO-Alternative host materials for Li+-conducting solid polymer electrolytes. Prog. Polym. Sci. 2018, 81, 114-43.
7. Sundararaman, S.; Halat, D. M.; Choo, Y.; et al. Exploring the ion solvation environments in solid-state polymer electrolytes through free-energy sampling. Macromolecules 2021, 54, 8590-600.
8. Gudla, H.; Hockmann, A.; Brandell, D.; Mindemark, J. To hop or not to hop: unveiling different modes of ion transport in solid polymer electrolytes through molecular dynamics simulations. ACS. Appl. Polym. Mater. 2025, 7, 4716-24.
9. Kalhoff, J.; Eshetu, G. G.; Bresser, D.; Passerini, S. Safer electrolytes for lithium-ion batteries: state of the art and perspectives. ChemSusChem 2015, 8, 2154-75.
10. Cameron, G. G.; Ingram, M. D.; Sorrie, G. A. The mechanism of conductivity of liquid polymer electrolytes. J. Chem. Soc. Faraday. Trans. 1. 1987, 83, 3345.
11. Xue, Z.; He, D.; Xie, X. Poly(ethylene oxide)-based electrolytes for lithium-ion batteries. J. Mater. Chem. A. 2015, 3, 19218-53.
12. Yu, X.; Jiang, X.; Seidler, M. E.; et al. Nanostructured ionic separator formed by block copolymer self-assembly: a gateway for alleviating concentration polarization in batteries. Macromolecules 2022, 55, 2787-96.
13. Cao, D.; Sun, X.; Li, Q.; Natan, A.; Xiang, P.; Zhu, H. Lithium dendrite in all-solid-state batteries: growth mechanisms, suppression strategies, and characterizations. Matter 2020, 3, 57-94.
14. Wu, B.; Wang, S.; Lochala, J.; et al. The role of the solid electrolyte interphase layer in preventing Li dendrite growth in solid-state batteries. Energy. Environ. Sci. 2018, 11, 1803-10.
15. Khurana, R.; Schaefer, J. L.; Archer, L. A.; Coates, G. W. Suppression of lithium dendrite growth using cross-linked polyethylene/poly(ethylene oxide) electrolytes: a new approach for practical lithium-metal polymer batteries. J. Am. Chem. Soc. 2014, 136, 7395-402.
16. Sun, C.; Liu, J.; Gong, Y.; Wilkinson, D. P.; Zhang, J. Recent advances in all-solid-state rechargeable lithium batteries. Nano. Energy. 2017, 33, 363-86.
17. Yang, S.; Lee, S.; Kang, M. S.; et al. Insights into improving the li-ion transference number and li deposition uniformity toward a high-current-density lithium metal anode. Carbon. Energy. 2025, 7, e70053.
18. Liu, J.; Yuan, H.; Liu, H.; et al. Unlocking the failure mechanism of solid state lithium metal batteries. Advanced. Energy. Materials. 2022, 12, 2100748.
19. Stolwijk, N. A.; Heddier, C.; Reschke, M.; Wiencierz, M.; Bokeloh, J.; Wilde, G. Salt-concentration dependence of the glass transition temperature in PEO-NaI and PEO-LiTFSI polymer electrolytes. Macromolecules 2013, 46, 8580-8.
20. Martinez-ibañez, M.; Sanchez-diez, E.; Oteo, U.; et al. Anions with a dipole: toward high transport numbers in solid polymer electrolytes. Chem. Mater. 2022, 34, 3451-60.
21. Lin, L.; Chen, C. Accurate characterization of transference numbers in electrolyte systems. J. Power. Sources. 2024, 603, 234236.
22. Zhu, J.; Zhang, Z.; Zhao, S.; Westover, A. S.; Belharouak, I.; Cao, P. Single-ion conducting polymer electrolytes for solid-state lithium-metal batteries: design, performance, and challenges. Adv. Energy. Mater. 2021, 11, 2003836.
23. Shah, D. B.; Olson, K. R.; Karny, A.; Mecham, S. J.; Desimone, J. M.; Balsara, N. P. Effect of anion size on conductivity and transference number of perfluoroether electrolytes with lithium salts. J. Electrochem. Soc. 2017, 164, A3511-7.
24. Wang, S.; Jeung, S.; Min, K. The effects of anion structure of lithium salts on the properties of in-situ polymerized thermoplastic polyurethane electrolytes. Polymer 2010, 51, 2864-71.
25. Zhang, H.; Oteo, U.; Zhu, H.; et al. Enhanced lithium-ion conductivity of polymer electrolytes by selective introduction of hydrogen into the anion. Angew. Chem. Int. Ed. 2019, 58, 7829-34.
26. Scheers, J.; Niedzicki, L.; Zukowska, G. Z.; Johansson, P.; Wieczorek, W.; Jacobsson, P. Ion-ion and ion-solvent interactions in lithium imidazolide electrolytes studied by Raman spectroscopy and DFT models. Phys. Chem. Chem. Phys. 2011, 13, 11136-47.
27. Porcarelli, L.; Shaplov, A. S.; Salsamendi, M.; et al. Single-ion block copoly(ionic liquid)s as electrolytes for all-solid state lithium batteries. ACS. Appl. Mater. Interfaces. 2016, 8, 10350-9.
28. Jangu, C.; Savage, A. M.; Zhang, Z.; et al. Sulfonimide-containing triblock copolymers for improved conductivity and mechanical performance. Macromolecules 2015, 48, 4520-8.
29. Rolland, J.; Poggi, E.; Vlad, A.; Gohy, J. Single-ion diblock copolymers for solid-state polymer electrolytes. Polymer 2015, 68, 344-52.
30. Sadoway, D. R.; Huang, B.; Trapa, P. E.; Soo, P. P.; Bannerjee, P.; Mayes, A. M. Self-doped block copolymer electrolytes for solid-state, rechargeable lithium batteries. J. Power. Sources. 2001, 97-98, 621-3.
31. Ryu, S.; Trapa, P. E.; Olugebefola, S. C.; Gonzalez-leon, J. A.; Sadoway, D. R.; Mayes, A. M. Effect of counter ion placement on conductivity in single-ion conducting block copolymer electrolytes. J. Electrochem. Soc. 2005, 152, A158.
32. Gao, J.; Wang, C.; Han, D. W.; Shin, D. M. Single-ion conducting polymer electrolytes as a key jigsaw piece for next-generation battery applications. Chem. Sci. 2021, 12, 13248-72.
33. Stolz, L.; Hochstädt, S.; Röser, S.; Hansen, M. R.; Winter, M.; Kasnatscheew, J. Single-ion versus dual-ion conducting electrolytes: the relevance of concentration polarization in solid-state batteries. ACS. Appl. Mater. Interfaces. 2022, 14, 11559-66.
34. Chen, H.; Zheng, M.; Qian, S.; et al. Functional additives for solid polymer electrolytes in flexible and high-energy-density solid-state lithium-ion batteries. Carbon. Energy. 2021, 3, 929-56.
35. Meng, Y.; Hu, J.; Yu, Q.; et al. Trace filling strategy of amphoteric molecules for large-capacity and long-lasting Li-Fe-F conversion all-solid-state batteries. J. Energy. Chem. 2025, 110, 153-64.
36. Qiao, L.; Rodriguez, Peña. S.; Martínez-Ibañez, M.; et al. Anion π-π stacking for improved lithium transport in polymer electrolytes. J. Am. Chem. Soc. 2022, 144, 9806-16.
37. Fortuin, B. A.; Meabe, L.; Peña, S. R.; et al. Molecular-level insight into charge carrier transport and speciation in solid polymer electrolytes by chemically tuning both polymer and lithium salt. J. Phys. Chem. C. Nanomater. Interfaces. 2023, 127, 1955-64.
38. Lu, N.; Ho, Y.; Fan, C.; Wang, F.; Lee, J. A simple method for synthesizing polymeric lithium salts exhibiting relatively high cationic transference number in solid polymer electrolytes. Solid. State. Ionics. 2007, 178, 347-53.
39. Sethurajan, A. K.; Krachkovskiy, S. A.; Halalay, I. C.; Goward, G. R.; Protas, B. Accurate characterization of ion transport properties in binary symmetric electrolytes using in situ NMR imaging and inverse modeling. J. Phys. Chem. B. 2015, 119, 12238-48.
40. Evans, J.; Vincent, C. A.; Bruce, P. G. Electrochemical measurement of transference numbers in polymer electrolytes. Polymer 1987, 28, 2324-8.
41. Bruce, P. G.; Vincent, C. A. Steady state current flow in solid binary electrolyte cells. J. Electroanal. Chem. Interfacial. Electrochem. 1987, 225, 1-17.
42. Stolz, L.; Homann, G.; Winter, M.; Kasnatscheew, J. The Sand equation and its enormous practical relevance for solid-state lithium metal batteries. Mater. Today. 2021, 44, 9-14.
43. Havu, V.; Blum, V.; Havu, P.; Scheffler, M. Efficient integration for all-electron electronic structure calculation using numeric basis functions. J. Comput. Phys. 2009, 228, 8367-79.
44. Blum, V.; Gehrke, R.; Hanke, F.; et al. Ab initio molecular simulations with numeric atom-centered orbitals. Comput. Phys. Commun. 2009, 180, 2175-96.
45. Lee, C.; Yang, W.; Parr, R. G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B. 1988, 37, 785.
46. Becke, A. D. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 1993, 98, 5648-52.
47. Molinari, N.; Mailoa, J. P.; Kozinsky, B. Effect of salt concentration on ion clustering and transport in polymer solid electrolytes: a molecular dynamics study of PEO-LiTFSI. Chem. Mater. 2018, 30, 6298-306.
48. Kang, P.; Wu, L.; Chen, D.; et al. Dynamical ion association and transport properties in PEO-LiTFSI electrolytes: effect of salt concentration. J. Phys. Chem. B. 2022, 126, 4531-42.
49. Brooks, D. J.; Merinov, B. V.; Goddard, W. A.; Kozinsky, B.; Mailoa, J. Atomistic description of ionic diffusion in PEO-LiTFSI: effect of temperature, molecular weight, and ionic concentration. Macromolecules 2018, 51, 8987-95.
50. Darden, T.; York, D.; Pedersen, L. Particle mesh Ewald: an N·log(N) method for Ewald sums in large systems. J. Chem. Phys. 1993, 98, 10089-92.
51. Essmann, U.; Perera, L.; Berkowitz, M. L.; Darden, T.; Lee, H.; Pedersen, L. G. A smooth particle mesh Ewald method. J. Chem. Phys. 1995, 103, 8577-93.
52. Pronk, S.; Páll, S.; Schulz, R.; et al. GROMACS 4.5: a high-throughput and highly parallel open source molecular simulation toolkit. Bioinformatics 2013, 29, 845-54.
53. Brooks, C. L. 3rd.; Case, D. A.; Plimpton, S.; Roux, B.; van der Spoel, D.; Tajkhorshid, E. Classical molecular dynamics. J. Chem. Phys. 2021, 154, 100401.
54. Gouveia, A. S. L.; Bernardes, C. E. S.; Tomé, L. C.; et al. Ionic liquids with anions based on fluorosulfonyl derivatives: from asymmetrical substitutions to a consistent force field model. Phys. Chem. Chem. Phys. 2017, 19, 29617-24.
55. Jorgensen, W. L.; Maxwell, D. S.; Tirado-rives, J. Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids. J. Am. Chem. Soc. 1996, 118, 11225-36.
56. Rizzo, R. C.; Jorgensen, W. L. OPLS all-atom model for amines: resolution of the amine hydration problem. J. Am. Chem. Soc. 1999, 121, 4827-36.
57. Watkins, E. K.; Jorgensen, W. L. Perfluoroalkanes: conformational analysis and liquid-state properties from ab initio and Monte Carlo calculations. J. Phys. Chem. A. 2001, 105, 4118-25.
58. Brehm, M.; Thomas, M.; Gehrke, S.; Kirchner, B. TRAVIS-a free analyzer for trajectories from molecular simulation. J. Chem. Phys. 2020, 152, 164105.
59. Brehm, M.; Kirchner, B. TRAVIS - a free analyzer and visualizer for Monte Carlo and molecular dynamics trajectories. J. Chem. Inf. Model. 2011, 51, 2007-23.
60. Mehrer, H. Diffusion in solids: fundamentals, methods, materials, diffusion-controlled processes, 1th ed.; Springer Berlin, Heidelberg, 2007.
61. Zhou, Z. B.; Matsumoto, H.; Tatsumi, K. Low-melting, low-viscous, hydrophobic ionic liquids: aliphatic quaternary ammonium salts with perfluoroalkyltrifluoroborates. Chemistry 2005, 11, 752-66.
62. Zhou, Z. B.; Matsumoto, H.; Tatsumi, K. Low-melting, low-viscous, hydrophobic ionic liquids: 1-alkyl(alkyl ether)-3-methylimidazolium perfluoroalkyltrifluoroborate. Chemistry 2004, 10, 6581-91.
63. Zhou, Z. B.; Matsumoto, H.; Tatsumi, K. Cyclic quaternary ammonium ionic liquids with perfluoroalkyltrifluoroborates: synthesis, characterization, and properties. Chemistry 2006, 12, 2196-212.
64. Fan, L.; He, H.; Nan, C. Tailoring inorganic-polymer composites for the mass production of solid-state batteries. Nat. Rev. Mater. 2021, 6, 1003-19.
65. Zhang, X.; Cheng, S.; Fu, C.; et al. Advancements and challenges in organic-inorganic composite solid electrolytes for all-solid-state lithium batteries. NanoMicro. Lett. 2024, 17, 2.
66. Ulihin, A. S.; Uvarov, N. F.; Gerasimov, K. B. Conductivity of lithium bis(trifluoromethane)sulfonamide (LiTFSI). 6th. International. Russian-Kazakhstan. Conference. “Chemical. Technologies. of. Functional. Materials”. (RKFM-2020). , Elsevier Ltd., 2020; Vol. 31, pp 523-4.
67. Kotwiński, J.; Marzantowicz, M.; Leszczynska, M.; Gągor, A.; Abrahams, I.; Krok, F. Polymorphism in LiN(CF3SO2)2. Solid. State. Ionics. 2019, 330, 9-16.
68. Lassègues, J. C.; Grondin, J.; Aupetit, C.; Johansson, P. Spectroscopic identification of the lithium ion transporting species in LiTFSI-doped ionic liquids. J. Phys. Chem. A. 2009, 113, 305-14.
69. Pitawala, J.; Martinelli, A.; Johansson, P.; Jacobsson, P.; Matic, A. Coordination and interactions in a Li-salt doped ionic liquid. J. Non-Cryst. Solids. 2015, 407, 318-23.
70. Edman, L. Ion association and ion solvation effects at the crystalline-amorphous phase transition in PEO-LiTFSI. J. Phys. Chem. B. 2000, 104, 7254-8.
71. Rey, I.; Johansson, P.; Lindgren, J.; Lassègues, J. C.; Grondin, J.; Servant, L. Spectroscopic and theoretical study of (CF3SO2)2N-(TFSI-) and (CF3SO2)2NH (HTFSI). J. Phys. Chem. A. 1998, 102, 3249-58.
72. Seo, D. M.; Boyle, P. D.; Sommer, R. D.; Daubert, J. S.; Borodin, O.; Henderson, W. A. Solvate structures and spectroscopic characterization of LiTFSI electrolytes. J. Phys. Chem. B. 2014, 118, 13601-8.
73. Rey, I.; Lassègues, J.; Grondin, J.; Servant, L. Infrared and Raman study of the PEO-LiTFSI polymer electrolyte. Electrochim. Acta. 1998, 43, 1505-10.
74. Han, S.; Sommer, R. D.; Boyle, P. D.; et al. Electrolyte solvation and ionic association: Part IX. Structures and raman spectroscopic characterization of LiFSI solvates. J. Electrochem. Soc. 2022, 169, 110544.
75. Bazylewski, P.; Divigalpitiya, R.; Fanchini, G. In situ Raman spectroscopy distinguishes between reversible and irreversible thiol modifications in L-cysteine. RSC. Adv. 2017, 7, 2964-70.
76. Savoie, B. M.; Webb, M. A.; Miller, T. F. 3rd. Enhancing cation diffusion and suppressing anion diffusion via lewis-acidic polymer electrolytes. J. Phys. Chem. Lett. 2017, 8, 641-6.
77. Monroe, C.; Newman, J. The impact of elastic deformation on deposition kinetics at lithium/polymer interfaces. J. Electrochem. Soc. 2005, 152, A396.
78. Doyle, M.; Fuller, T. F.; Newman, J. The importance of the lithium ion transference number in lithium/polymer cells. Electrochim. Acta. 1994, 39, 2073-81.
79. Sand, H. J. III. On the concentration at the electrodes in a solution, with special reference to the liberation of hydrogen by electrolysis of a mixture of copper sulphate and sulphuric acid. London. Edinburgh. Dublin. Philos. Mag. J. Sci. 1901, 1, 45-79.






