REFERENCES

1. Karam, Z.; Susantyoko, R. A.; Alhammadi, A.; Mustafa, I.; Wu, C.; Almheiri, S. Development of surface-engineered tape-casting method for fabricating freestanding carbon nanotube sheets containing Fe2O3 nanoparticles for flexible batteries. Adv. Eng. Mater. 2018, 20, 1701019.

2. Huang, X.; Cai, X.; Xu, D.; et al. Hierarchical Fe2O3@CNF fabric decorated with MoS2 nanosheets as a robust anode for flexible lithium-ion batteries exhibiting ultrahigh areal capacity. J. Mater. Chem. A. 2018, 6, 16890-9.

3. Mo, R.; Rooney, D.; Sun, K.; Yang, H. Y. 3D nitrogen-doped graphene foam with encapsulated germanium/nitrogen-doped graphene yolk-shell nanoarchitecture for high-performance flexible Li-ion battery. Nat. Commun. 2017, 8, 13949.

4. Wang, M.; Huang, Y.; Zhu, Y.; Wu, X.; Zhang, N.; Zhang, H. Binder-free flower-like SnS2 nanoplates decorated on the graphene as a flexible anode for high-performance lithium-ion batteries. J. Alloys. Compd. 2019, 774, 601-9.

5. Kuang, Y.; Chen, C.; Pastel, G.; et al. Conductive cellulose nanofiber enabled thick electrode for compact and flexible energy storage devices. Adv. Energy. Mater. 2018, 8, 1802398.

6. Luo, S.; Wang, K.; Wang, J.; Jiang, K.; Li, Q.; Fan, S. Binder-free LiCoO2/carbon nanotube cathodes for high-performance lithium ion batteries. Adv. Mater. 2012, 24, 2294-8.

7. Huang, J.; Li, J.; Ye, L.; et al. Synthesis of Si/C composites by silicon waste recycling and carbon coating for high-capacity lithium-ion storage. Nanomaterials 2023, 13, 2142.

8. Szczech, J. R.; Jin, S. Nanostructured silicon for high capacity lithium battery anodes. Energy. Environ. Sci. 2011, 4, 56-72.

9. Zhao, L.; Ding, B.; Qin, X. Y.; et al. Revisiting the roles of natural graphite in ongoing lithium-ion batteries. Adv. Mater. 2022, 34, 2106704.

10. Yang, Y.; Yuan, W.; Kang, W.; et al. Silicon-nanoparticle-based composites for advanced lithium-ion battery anodes. Nanoscale 2020, 12, 7461-84.

11. Zhang, P.; Zhu, Q.; Guan, Z.; Zhao, Q.; Sun, N.; Xu, B. A flexible Si@C electrode with excellent stability employing an MXene as a multifunctional binder for lithium-ion batteries. ChemSusChem 2020, 13, 1621-8.

12. Zheng, T.; Jia, Z.; Lin, N.; et al. Molecular spring enabled high-performance anode for lithium ion batteries. Polymers 2017, 9, 657.

13. Yu, C.; Chen, X.; Xiao, Z.; et al. Silicon carbide as a protective layer to stabilize Si-based anodes by inhibiting chemical reactions. Nano. Lett. 2019, 19, 5124-32.

14. Olesinski, R. W.; Abbaschian, G. J. The C-Si (carbon-silicon) system. Bull. Alloy. Phase. Diagr. 1984, 5, 486-9.

15. Durand, F.; Duby, J. C. Carbon solubility in solid and liquid silicon-a review with reference to eutectic equilibrium. JPE 1999, 20, 61-3.

16. Jeong, J.; Chung, G.; Nishino, S. Raman scattering investigation of polycrystalline 3C-SiC film deposited on SiO2 by using APCVD with hexamethyldisilane. J. Korean. Phy. Soc. 2008, 52, 43-7.

17. Raju, M.; Sen, S.; Sarkar, D.; Jacob, C. Synthesis of 3C-silicon carbide 1D structures by carbothermal reduction process. J. Alloys. Compd. 2021, 857, 158243.

18. Gouider Trabelsi A, V Kusmartsev F, Kusmartseva A, H Alkallas F, AlFaify S, Shkir M. Raman spectroscopy imaging of exceptional electronic properties in epitaxial graphene grown on SiC. Nanomaterials 2020, 10, 2234.

19. Negishi, R.; Yamamoto, K.; Kitakawa, H.; et al. Synthesis of very narrow multilayer graphene nanoribbon with turbostratic stacking. Appl. Phys. Lett. 2017, 110, 201901.

20. Bean, A.; Newman, R. The solubility of carbon in pulled silicon crystals. J. Phys. Chem. Solids. 1971, 32, 1211-9.

21. Zebardastan, N.; Bradford, J.; Lipton-Duffin, J.; et al. High quality epitaxial graphene on 4H-SiC by face-to-face growth in ultra-high vacuum. Nanotechnology 2022, 34, 105601.

22. Lu, L.; Zhang, D.; Xie, Y.; He, H.; Wang, W. Laser induced graphene/silicon carbide: core-shell structure, multifield coupling effects, and pressure sensor applications. Adv. Mater. Technol. 2022, 7, 2200441.

23. Shi, H.; Wang, J.; Wang, C.; et al. Design of supported-coated structure silicon/carbon composites using industrial waste micrometer-sized silicon for an advanced lithium-ion battery anode. Energy. Fuels. 2024, 38, 8306-16.

24. Yu, K.; Wang, Y.; Wang, X.; Liu, W.; Liang, J.; Liang, C. Preparation of porous carbon anode materials for lithium-ion battery from rice husk. Mater. Lett. 2019, 253, 405-8.

25. Yoshio, M.; Wang, H.; Fukuda, K.; Hara, Y.; Adachi, Y. Effect of carbon coating on electrochemical performance of treated natural graphite as lithium-ion battery anode material. J. Electrochem. Soc. 2000, 147, 1245.

26. Ren, W.; Li, D.; Liu, H.; et al. Lithium storage performance of carbon nanotubes with different nitrogen contents as anodes in lithium ions batteries. Electrochim. Acta. 2013, 105, 75-82.

27. Sun, C.; Xu, X.; Gui, C.; et al. High-quality epitaxial N doped graphene on SiC with tunable interfacial interactions via electron/ion bridges for stable lithium-ion storage. Nano-Micro. Lett. 2023, 15, 202.

28. Li, H.; Yu, H.; Zhang, X.; et al. Bowl-like 3C-SiC nanoshells encapsulated in hollow graphitic carbon spheres for high-rate lithium-ion batteries. Chem. Mater. 2016, 28, 1179-86.

29. Zhang, Y.; Wu, B.; Mu, G.; Ma, C.; Mu, D.; Wu, F. recent progress and perspectives on silicon anode: synthesis and prelithiation for LIBs energy storage. J. Energy. Chem. 2022, 64, 615-50.

Energy Materials
ISSN 2770-5900 (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/