REFERENCES

1. Wang, T.; Pan, R.; Martins, M. L.; et al. Machine-learning-assisted material discovery of oxygen-rich highly porous carbon active materials for aqueous supercapacitors. Nat. Commun. 2023, 14, 40282.

2. Wang, Z.; Liu, Y.; Guo, Y.; et al. Coral polyp and spine dual-inspired gradient hierarchical architecture for ultrahigh-rate and long-life sodium storage. Adv. Funct. Mater. 2024, 34, 2402178.

3. Ma, C.; Zhu, B.; Wang, Y.; et al. Porous carbon nanosheets integrated with graphene-wrapped CoO and CoNx as efficient bifunctional oxygen electrocatalysts for rechargeable zinc-air batteries. J. Colloid. Interface. Sci. 2025, 685, 793-803.

4. Mo, T.; Wang, Z.; Zeng, L.; et al. Energy storage mechanism in supercapacitors with porous graphdiynes: effects of pore topology and electrode metallicity. Adv. Mater. 2023, 35, 2301118.

5. Chang, L.; Chen, S.; Fei, Y.; Stacchiola, D. J.; Hu, Y. H. Superstructured NiMoO4@CoMoO4 core-shell nanofibers for supercapacitors with ultrahigh areal capacitance. Proc. Natl. Acad. Sci. USA. 2023, 120, e2219950120.

6. Li, X.; Zheng, Q.; Li, C.; et al. Bubble up induced graphene microspheres for engineering capacitive energy storage. Adv. Energy. Mater. 2023, 13, 2203761.

7. Liu, Q.; Wu, D.; Wang, T.; Wang, C.; Jia, D. Pre-oxidating and pre-carbonizing to regulate the composition and structure of coal tar pitch: the fabrication of porous carbon for supercapacitor applications. Adv. Funct. Mater. 2024, 34, 2400556.

8. He, X.; Ma, H.; Wang, J.; Xie, Y.; Xiao, N.; Qiu, J. Porous carbon nanosheets from coal tar for high-performance supercapacitors. J. Power. Sources. 2017, 357, 41-6.

9. Zhang, Z.; Gao, Z.; Zhang, Y.; et al. Hierarchical porous nitrogen-doped graphite from tissue paper as efficient electrode material for symmetric supercapacitor. J. Power. Sources. 2021, 492, 229670.

10. Cheng, J.; Lu, Z.; Zhao, X.; Chen, X.; Liu, Y. Green needle coke-derived porous carbon for high-performance symmetric supercapacitor. J. Power. Sources. 2021, 494, 229770.

11. Liu, X.; Lyu, D.; Merlet, C.; et al. Structural disorder determines capacitance in nanoporous carbons. Science 2024, 384, 321-5.

12. Wang, C.; Wu, D.; Wang, H.; Gao, Z.; Xu, F.; Jiang, K. A green and scalable route to yield porous carbon sheets from biomass for supercapacitors with high capacity. J. Mater. Chem. A. 2018, 6, 1244-54.

13. Zhou, H.; Peng, Y.; Wu, H. B.; et al. Fluorine-rich nanoporous carbon with enhanced surface affinity in organic electrolyte for high-performance supercapacitors. Nano. Energy. 2016, 21, 80-9.

14. Yang, X.; Zhao, S.; Zhang, Z.; et al. Pore structure regulation of hierarchical porous carbon derived from coal tar pitch via pre-oxidation strategy for high-performance supercapacitor. J. Colloid. Interface. Sci. 2022, 614, 298-309.

15. Che, X.; Yang, J.; Liu, S.; Wang, M.; He, S.; Qiu, J. Multilayer-dense porous carbon nanosheets with high volumetric capacitance for supercapacitors. Ind. Eng. Chem. Res. 2022, 61, 8908-17.

16. Zhang, S.; Zhu, J.; Qing, Y.; et al. Ultramicroporous carbons puzzled by graphene quantum dots: integrated high gravimetric, volumetric, and areal capacitances for supercapacitors. Adv. Funct. Mater. 2018, 28, 1805898.

17. Li, Q.; Jiang, Y.; Jiang, Z.; et al. Ultrafast pore-tailoring of dense microporous carbon for high volumetric performance supercapacitors in organic electrolyte. Carbon 2022, 191, 19-27.

18. Jiang, Y.; Li, J.; Jiang, Z.; et al. Large-surface-area activated carbon with high density by electrostatic densification for supercapacitor electrodes. Carbon 2021, 175, 281-8.

19. Zheng, Y.; Chen, K.; Jiang, K.; Zhang, F.; Zhu, G.; Xu, H. Progress of synthetic strategies and properties of heteroatoms-doped (N, P, S, O) carbon materials for supercapacitors. J. Energy. Storage. 2022, 56, 105995.

20. Wang, Q.; Su, J.; Chen, H.; et al. Highly conductive nitrogen-doped sp2/sp3 hybrid carbon as a conductor-free charge storage host. Adv. Funct. Mater. 2022, 32, 2209201.

21. Srinivasan, S. B.; Devendiran, S.; Savunthari, K. V.; Arumugam, P.; Mukerjee, S. Insights into multifarious heteroatom-doped/enriched carbon-based materials and their composites: Synthesis and Supercapacitor applications - a crucial review. Prog. Mater. Sci. 2025, 153, 101470.

22. Lou, G.; Pei, G.; Wu, Y.; et al. Combustion conversion of wood to N, O co-doped 2D carbon nanosheets for zinc-ion hybrid supercapacitors. Chem. Eng. J. 2021, 413, 127502.

23. Ghosh, S.; Barg, S.; Jeong, S. M.; Ostrikov, K. Heteroatom-doped and oxygen-functionalized nanocarbons for high-performance supercapacitors. Adv. Energy. Mater. 2020, 10, 2001239.

24. Zhang, N.; Liu, F.; Xu, S.; Wang, F.; Yu, Q.; Liu, L. Nitrogen-phosphorus co-doped hollow carbon microspheres with hierarchical micro-meso-macroporous shells as efficient electrodes for supercapacitors. J. Mater. Chem. A. 2017, 5, 22631-40.

25. Wu, Z.; Winter, A.; Chen, L.; et al. Three-dimensional nitrogen and boron co-doped graphene for high-performance all-solid-state supercapacitors. Adv. Mater. 2012, 24, 5130-5.

26. Liu, H.; Zhu, S.; Zhang, Y.; et al. Unveiling superior capacitive behaviors of one-pot molten salt-engineered B, N Co-doped porous carbon sheets. Small 2023, 19, 2204119.

27. Gao, H.; Zhang, D.; Zhou, H.; et al. Boosting gravimetric and volumetric energy density of supercapacitors by 3D pomegranate-like porous carbon structure design. Appl. Surf. Sci. 2020, 534, 147613.

28. Li, H.; Tao, Y.; Zheng, X.; et al. Ultra-thick graphene bulk supercapacitor electrodes for compact energy storage. Energy. Environ. Sci. 2016, 9, 3135-42.

29. Murali, S.; Quarles, N.; Zhang, L. L.; et al. Volumetric capacitance of compressed activated microwave-expanded graphite oxide (a-MEGO) electrodes. Nano. Energy. 2013, 2, 764-8.

30. Chen, Y.; Qin, F.; Wang, Z.; et al. Dense porous carbon from chemical welding the oxidized coal liquefaction residue for enhanced volumetric performance supercapacitors. J. Energy. Storage. 2023, 72, 108542.

31. Yu, X.; Lu, J.; Zhan, C.; et al. Synthesis of activated carbon nanospheres with hierarchical porous structure for high volumetric performance supercapacitors. Electrochim. Acta. 2015, 182, 908-16.

32. Li, Q.; Zhang, S.; Jiang, Y.; et al. Preparation of high density activated carbon by mechanical compression of precursors for compact capacitive energy storage. Acta. Phys. Chim. Sin. 2025, 41, 100028.

33. Li, Y.; Chen, M.; Liu, B.; Zhang, Y.; Liang, X.; Xia, X. Heteroatom doping: an effective way to boost sodium ion storage. Adv. Energy. Mater. 2020, 10, 2000927.

34. Chen, C.; Huang, Y.; Meng, Z.; Xu, Z.; Liu, P.; Li, T. Multi-heteroatom doped porous carbon derived from insect feces for capacitance-enhanced sodium-ion storage. J. Energy. Chem. 2021, 54, 482-92.

35. Zhao, J.; Li, Y.; Wang, G.; et al. Enabling high-volumetric-energy-density supercapacitors: designing open, low-tortuosity heteroatom-doped porous carbon-tube bundle electrodes. J. Mater. Chem. A. 2017, 5, 23085-93.

36. Yan, L.; Li, D.; Yan, T.; et al. N,P,S-codoped hierarchically porous carbon spheres with well-balanced gravimetric/volumetric capacitance for supercapacitors. ACS. Sustain. Chem. Eng. 2018, 6, 5265-72.

37. Chen, C.; Zhao, M.; Cai, Y.; et al. Scalable synthesis of strutted nitrogen doped hierarchical porous carbon nanosheets for supercapacitors with both high gravimetric and volumetric performances. Carbon 2021, 179, 458-68.

38. Yu, W.; Meng, Y.; Gong, J.; et al. N/O/P Co-doped highly microporous carbons with optimized volumetric and gravimetric supercapacitive performance. ACS. Appl. Energy. Mater. 2025, 8, 801-9.

39. Liang, K.; Zou, K.; Liu, J.; Deng, Y.; Chen, G. An interlayer spacing-anion matching guideline for high-performance N-doped porous carbon cathode. ACS. Energy. Lett. 2023, 8, 3204-13.

40. Wu, X.; Liu, J.; Wang, Y.; Zhao, Y.; Li, G.; Zhang, G. Fabrication of porous carbon nanosheets via urea-promoted activation of potassium citrate for enhanced supercapacitor performance. Chem. Eng. J. 2025, 512, 162487.

41. Xu, Z.; Dou, R.; Tan, Y.; et al. Facile and green preparation of carbonaceous material-based wood bio-adhesives using hydrochar from hydrothermal carbonization of glucose with or without acrylic acid/acrylamide. Int. J. Adhes. Adhes. 2025, 136, 103851.

42. Wu, D.; Sun, F.; Wang, H.; et al. Mechanochemical process enhancing pore reconstruction for dense energy storage of carbon-based supercapacitors. Energy. Mater. 2025, 5, 500055.

43. Shen, C.; Li, R.; Yan, L.; et al. Rational design of activated carbon nitride materials for symmetric supercapacitor applications. Appl. Surf. Sci. 2018, 455, 841-8.

44. Vijayakumar, M.; Santhosh, R.; Adduru, J.; Rao, T. N.; Karthik, M. Activated carbon fibres as high performance supercapacitor electrodes with commercial level mass loading. Carbon 2018, 140, 465-76.

Energy Materials
ISSN 2770-5900 (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/