REFERENCES

1. Rana, S.; Kumar, A.; Dhiman, P.; Mola, G.; Sharma, G.; Lai, C. Recent advances in photocatalytic removal of sulfonamide pollutants from waste water by semiconductor heterojunctions: a review. Mater. Today. Chem. 2023, 30, 101603.

2. Du, Y.; Cheng, Q.; Qian, M.; et al. Biodegradation of sulfametoxydiazine by Alcaligenes aquatillis FA: performance, degradation pathways, and mechanisms. J. Hazard. Mater. 2023, 452, 131186.

3. Zhang, M.; Ruan, J.; Wang, X.; et al. Selective oxidation of organic pollutants based on reactive oxygen species and the molecular structure: degradation behavior and mechanism analysis. Water. Res. 2023, 246, 120697.

4. Chow, T. G.; Khan, D. A. Sulfonamide hypersensitivity. Clin. Rev. Allergy. Immunol. 2022, 62, 400-12.

5. Ottosen, C. F.; Bjerg, P. L.; Kümmel, S.; et al. Natural attenuation of sulfonamides and metabolites in contaminated groundwater - review, advantages and challenges of current documentation techniques. Water. Res. 2024, 254, 121416.

6. Robles-Jimenez, L. E.; Aranda-Aguirre, E.; Castelan-Ortega, O. A.; et al. Worldwide traceability of antibiotic residues from livestock in wastewater and soil: a systematic review. Animals 2021, 12, 60.

7. Liu, X.; Guo, X.; Liu, Y.; et al. A review on removing antibiotics and antibiotic resistance genes from wastewater by constructed wetlands: performance and microbial response. Environ. Pollut. 2019, 254, 112996.

8. Pan, M.; Chu, L. M. Fate of antibiotics in soil and their uptake by edible crops. Sci. Total. Environ. 2017, 599-600, 500-12.

9. Tian, S.; Zhang, C.; Huang, D.; et al. Recent progress in sustainable technologies for adsorptive and reactive removal of sulfonamides. Chem. Eng. J. 2020, 389, 123423.

10. Anjali, R.; Shanthakumar, S. Insights on the current status of occurrence and removal of antibiotics in wastewater by advanced oxidation processes. J. Environ. Manage. 2019, 246, 51-62.

11. Yang, J.; Li, Z.; Zhu, H. Adsorption and photocatalytic degradation of sulfamethoxazole by a novel composite hydrogel with visible light irradiation. Appl. Catal. B. Environ. 2017, 217, 603-14.

12. Wang, H.; Wang, S.; Jiang, J.; Shu, J. Removal of sulfadiazine by ferrate(VI) oxidation and montmorillonite adsorption-synergistic effect and degradation pathways. J. Environ. Chem. Eng. 2019, 7, 103225.

13. Hu, S.; Hu, H.; Li, W.; Ke, Y.; Li, M.; Zhao, Y. Enhanced sulfamethoxazole degradation in soil by immobilized sulfamethoxazole-degrading microbes on bagasse. RSC. Adv. 2017, 7, 55240-8.

14. Wang, J.; Wang, S. Microbial degradation of sulfamethoxazole in the environment. Appl. Microbiol. Biotechnol. 2018, 102, 3573-82.

15. Rivas-ortiz, I. B.; Cruz-gonzález, G.; Lastre-acosta, A. M.; et al. Optimization of radiolytic degradation of sulfadiazine by combining Fenton and gamma irradiation processes. J. Radioanal. Nucl. Chem. 2017, 314, 2597-607.

16. Deng, F.; Xie, J.; Garcia-rodriguez, O.; et al. A dynamic anode boosting sulfamerazine mineralization via electrochemical oxidation. J. Mater. Chem. A. 2021, 10, 192-208.

17. Xie, J.; Chen, W.; Lv, Y.; Chen, H.; Li, X.; Li, L. Synthesis of CeOx@SiO2 with tandem effect of mass transfer and activation for enhancing sulfanilamide degradation with ozone. Sep. Purif. Technol. 2021, 256, 117823.

18. Sun, M.; Zhang, Y.; Kong, S. Y.; Zhai, L. F.; Wang, S. Excellent performance of electro-assisted catalytic wet air oxidation of refractory organic pollutants. Water. Res. 2019, 158, 313-21.

19. Younis, M. A.; Lyu, S.; Lei, C.; et al. Efficient mineralization of sulfanilamide over oxygen vacancy-rich NiFe-LDH nanosheets array during electro-fenton process. Chemosphere 2021, 268, 129272.

20. Zeng, W.; Zhang, H.; Wu, R.; Liu, L.; Li, G.; Liang, H. Environment-friendly and efficient electrochemical degradation of sulfamethoxazole using reduced TiO2 nanotube arrays-based Ti membrane coated with Sb-SnO2. J. Hazard. Mater. 2023, 446, 130642.

21. Peng, Y.; Xiao, W.; Wang, H.; Bian, Z. Carbon defect induced electron transfer promotes electrocatalytic activation of molecular oxygen to selectively generate singlet oxygen for pollutants removal. Appl. Catal. B. Environ. Energy. 2025, 363, 124820.

22. Zhang, J.; Xie, J.; Chen, J.; et al. Mimicking the protein: hierarchically hydrophilic Co(OH)2 boosted peroxymonosulfate activation for ultrafast antibiotics degradation. Adv. Funct. Mater. , 2025, e10022.

23. Gu, Q.; Li, M.; Huo, Y.; et al. Theoretical evidence for a pH-dependent effect of carbonate on the degradation of sulfonamide antibiotics. Environ. Pollut. 2024, 361, 124710.

24. Tamilarasi, B.; Jithul, K.; Pandey, J. Non-noble metal-based electro-catalyst for the oxygen evolution reaction (OER): towards an active & stable electro-catalyst for PEM water electrolysis. Int. J. Hydrog. Energy. 2024, 58, 556-82.

25. Yang, S.; Liu, X.; Li, S.; et al. The mechanism of water oxidation using transition metal-based heterogeneous electrocatalysts. Chem. Soc. Rev. 2024, 53, 5593-625.

26. Li, H.; Nakajima, Y.; Nango, E.; et al. Oxygen-evolving photosystem II structures during S1-S2-S3 transitions. Nature 2024, 626, 670-7.

27. Kern, J.; Chatterjee, R.; Young, I. D.; et al. Structures of the intermediates of Kok’s photosynthetic water oxidation clock. Nature 2018, 563, 421-5.

28. Wang, P.; Zhang, S.; Wang, Z.; et al. Manganese-based oxide electrocatalysts for the oxygen evolution reaction: a review. J. Mater. Chem. A. 2023, 11, 5476-94.

29. Ham, K.; Kang, S.; Kim, Y.; Lee, Y.; Kim, Y.; Lee, J. Participation of the unstable lattice oxygen of cation-exchanged δ-MnO2 in the water oxidation reaction. J. Mater. Chem. A. 2023, 11, 21686-93.

30. He, Y.; Kang, Z.; Li, J.; Li, Y.; Tian, X. Recent progress of manganese dioxide based electrocatalysts for the oxygen evolution reaction. Ind. Chem. Mater. 2023, 1, 312-31.

31. Chen, Y.; Yang, S.; Liu, H.; Zhang, W.; Cao, R. An unusual network of α-MnO2 nanowires with structure-induced hydrophilicity and conductivity for improved electrocatalysis. Chinese. J. Catal. 2021, 42, 1724-31.

32. Huo, L.; Lv, M.; Li, M.; et al. Amorphous MnO2 lamellae encapsulated covalent triazine polymer-derived multi-heteroatoms-doped carbon for ORR/OER bifunctional electrocatalysis. Adv. Mater. 2024, 36, 2312868.

33. Sun, Y.; Chen, J.; Liu, L.; Chi, H.; Han, H. The mechanism of OER activity and stability enhancement in acid by atomically doped iridium in γ-MnO2. Chinese. J. Catal. 2025, 69, 99-110.

34. Chang, H.; Liu, X.; Zhao, S.; et al. Self-assembled 3D N/P/S-tridoped carbon nanoflower with highly branched carbon nanotubes as efficient bifunctional oxygen electrocatalyst toward high-performance rechargeable Zn-Air batteries. Adv. Funct. Mater. 2024, 34, 2313491.

35. Jiang, H.; Gu, J.; Zheng, X.; et al. Defect-rich and ultrathin N doped carbon nanosheets as advanced trifunctional metal-free electrocatalysts for the ORR, OER and HER. Energy. Environ. Sci. 2019, 12, 322-33.

36. Sari, F. N. I.; Lai, Y.; Huang, Y.; et al. Electronic structure engineering in NiFe sulfide via a third metal doping as efficient bifunctional OER/ORR electrocatalyst for rechargeable zinc-air battery. Adv. Funct. Mater. 2024, 34, 2310181.

37. Park, Y. S.; Liu, F.; Diercks, D.; Braaten, D.; Liu, B.; Duan, C. High-performance anion exchange membrane water electrolyzer enabled by highly active oxygen evolution reaction electrocatalysts: Synergistic effect of doping and heterostructure. Appl. Catal. B. Environ. 2022, 318, 121824.

38. Zhou, B.; Liu, X.; Li, L.; et al. Hydroxylation of IrO2 via La doping enhances oxygen evolution reaction performance for PEM water electrolysis. Chem. Eng. J. 2025, 521, 166886.

39. Yang, S.; Chen, D.; Cui, X.; Zhang, J.; Zhang, W.; Cao, R. Spherical Ni/Ni3Se2 heterostructure for efficient electrochemical oxidation reactions. ChemNanoMat 2023, 9, e202200509.

40. Cui, S.; Zhang, D.; Zhang, G.; Gan, Y. Reaction mechanism for the α-MnO2 cathode in aqueous Zn ion batteries revisited: elucidating the irreversible transformation of α-MnO2 into Zn-vernadite. J. Mater. Chem. A. 2022, 10, 25620-32.

41. Yuan, Y.; Liu, C.; Byles, B. W.; et al. Ordering heterogeneity of [MnO6] octahedra in tunnel-structured MnO2 and its influence on ion storage. Joule 2019, 3, 471-84.

42. Wu, Y.; Yao, R.; Zhao, Q.; Li, J.; Liu, G. La-RuO2 nanocrystals with efficient electrocatalytic activity for overall water splitting in acidic media: synergistic effect of La doping and oxygen vacancy. Chem. Eng. J. 2022, 439, 135699.

43. Alharbi, S. M.; Alkhalifah, M. A.; Howchen, B.; Rahmah, A. N. A.; Celorrio, V.; Fermin, D. J. Activating Mn sites by Ni replacement in α-MnO2. ACS. Mater. Au. 2024, 4, 74-81.

44. Xie, J.; Chen, Y.; He, Z.; et al. Single-atom Ni anchored on α-MnO2 nanorods as an electrocatalyst for the oxygen evolution and oxygen reduction reactions. ACS. Appl. Nano. Mater. 2024, 7, 18027-35.

45. Wang, Y.; Yang, R.; Ding, Y.; et al. Unraveling oxygen vacancy site mechanism of Rh-doped RuO2 catalyst for long-lasting acidic water oxidation. Nat. Commun. 2023, 14, 1412.

46. Lyons, M. E.; Brandon, M. P. The significance of electrochemical impedance spectra recorded during active oxygen evolution for oxide covered Ni, Co and Fe electrodes in alkaline solution. J. Electroanal. Chem. 2009, 631, 62-70.

47. Wang, H. Y.; Hung, S. F.; Chen, H. Y.; Chan, T. S.; Chen, H. M.; Liu, B. In operando identification of geometrical-site-dependent water oxidation activity of spinel Co3O4. J. Am. Chem. Soc. 2016, 138, 36-9.

48. Bai, L.; Lee, S.; Hu, X. Spectroscopic and electrokinetic evidence for a bifunctional mechanism of the oxygen evolution reaction. Angew. Chem. Int. Ed. 2021, 60, 3095-103.

49. Zhang, X.; Chen, Q. F.; Deng, J.; et al. Identifying Metal-oxo/peroxo intermediates in catalytic water oxidation by in situ electrochemical mass spectrometry. J. Am. Chem. Soc. 2022, 144, 17748-52.

50. Hu, J.; Li, X.; Liu, F.; Fu, W.; Lin, L.; Li, B. Comparison of chemical and biological degradation of sulfonamides: Solving the mystery of sulfonamide transformation. J. Hazard. Mater. 2022, 424, 127661.

51. Bu, J.; Deng, Z.; Liu, H.; Li, T.; Yang, Y.; Zhong, S. The degradation of sulfamilamide wastewater by three-dimensional electrocatalytic oxidation system composed of activated carbon bimetallic particle electrode. J. Clean. Prod. 2021, 324, 129256.

52. Yang, X.; Duan, J.; Qi, J.; et al. Modulating the electron structure of Co-3d in Co3O4-x/WO2.72 for boosting peroxymonosulfate activation and degradation of sulfamerazine: Roles of high-valence W and rich oxygen vacancies. J. Hazard. Mater. 2023, 445, 130576.

53. Barroso-Martínez, J. S.; Romo, A. I. B.; Pudar, S.; Putnam, S. T.; Bustos, E.; Rodríguez-López, J. Real-time detection of hydroxyl radical generated at operating electrodes via redox-active adduct formation using scanning electrochemical microscopy. J. Am. Chem. Soc. 2022, 144, 18896-907.

Energy Materials
ISSN 2770-5900 (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/