REFERENCES

1. I; The PRX Editors. Editorial: altermagnetism-a new punch line of fundamental magnetism. Phys. Rev. X. 2022, 12, 04002.

2. Manchon, A.; Koo, H. C.; Nitta, J.; Frolov, S. M.; Duine, R. A. New perspectives for Rashba spin-orbit coupling. Nat. Mater. 2015, 14, 871-82.

3. Zhang, F.; Lv, L.; Xu, Z.; et al. Prediction of the TiS2 bilayer with self-intercalation: robust ferromagnetic semiconductor with a high curie temperature. J. Phys. Chem. C. 2025, 129, 5577-88.

4. Guo, S. D.; Tao, Y. L.; Wang, G.; Ang, Y. S. How to produce spin-splitting in antiferromagnetic materials. J. Phys. Condens. Matter. 2024, 36, 215804.

5. Qi, Y.; Zhao, J.; Zeng, H. Spin-layer coupling in two-dimensional altermagnetic bilayers with tunable spin and valley splitting properties. Phys. Rev. B. 2024, 110, 014442.

6. Ma, H. Y.; Hu, M.; Li, N.; et al. Multifunctional antiferromagnetic materials with giant piezomagnetism and noncollinear spin current. Nat. Commun. 2021, 12, 2846.

7. Guo, Y.; Liu, H.; Janson, O.; Fulga, I. C.; van, den., Brink., J.; Facio, J. I. Spin-split collinear antiferromagnets: a large-scale ab-initio study. Materials. Today. Physics. 2023, 32, 100991.

8. Šmejkal, L.; Sinova, J.; Jungwirth, T. Beyond conventional ferromagnetism and antiferromagnetism: a phase with nonrelativistic spin and crystal rotation symmetry. Phys. Rev. X. 2022, 12, 031042.

9. Šmejkal, L.; Sinova, J.; Jungwirth, T. Emerging research landscape of altermagnetism. Phys. Rev. X. 2022, 12, 040501.

10. Naka, M.; Hayami, S.; Kusunose, H.; Yanagi, Y.; Motome, Y.; Seo, H. Spin current generation in organic antiferromagnets. Nat. Commun. 2019, 10, 4305.

11. Zhu, Y.; Chen, T.; Li, Y.; et al. Multipiezo effect in altermagnetic V2SeTeO monolayer. Nano. Lett. 2024, 24, 472-8.

12. Bhowal, S.; Spaldin, N. A. Ferroically ordered magnetic octupoles in d-wave altermagnets. Phys. Rev. X. 2024, 14, 011019.

13. Guo, S.; Guo, X.; Cheng, K.; Wang, K.; Ang, Y. S. Piezoelectric altermagnetism and spin-valley polarization in Janus monolayer Cr2SO. Appl. Phys. Lett. 2023, 123, 082401.

14. Gao, Z. F.; Qu, S.; Zeng, B.; et al. AI-accelerated discovery of altermagnetic materials. arXiv 2023, arXiv:2311.04418. Available online: http://arxiv.org/abs/2311.04418 (accessed 2025-05-14).

15. Mazin, I. I. Altermagnetism in MnTe: origin, predicted manifestations, and routes to detwinning. Phys. Rev. B. 2023, 107, L100418.

16. Mazin, I. I.; Koepernik, K.; Johannes, M. D.; González-Hernández, R.; Šmejkal, L. Prediction of unconventional magnetism in doped FeSb2. Proc. Natl. Acad. Sci. U. S. A. 2021, 118, e2108924118.

17. Sødequist, J.; Olsen, T. Two-dimensional altermagnets from high throughput computational screening: symmetry requirements, chiral magnons, and spin-orbit effects. Appl. Phys. Lett. 2024, 124, 182409.

18. Zeng, S.; Zhao, Y. Description of two-dimensional altermagnetism: categorization using spin group theory. Phys. Rev. B. 2024, 110, .054406.

19. Occhialini, C. A.; Martins, L. G. P.; Fan, S.; et al. Strain-modulated anisotropic electronic structure in superconducting RuO2 films. Phys. Rev. Materials. 2022, 6, 084802.

20. Gonzalez, Betancourt., R. D.; Zubáč, J.; Gonzalez-Hernandez, R.; et al. Spontaneous anomalous hall effect arising from an unconventional compensated magnetic phase in a semiconductor. Phys. Rev. Lett. 2023, 130, 036702.

21. Šmejkal, L.; Hellenes, A. B.; González-hernández, R.; Sinova, J.; Jungwirth, T. Giant and tunneling magnetoresistance in unconventional collinear antiferromagnets with nonrelativistic spin-momentum coupling. Phys. Rev. X. 2022, 12, 011028.

22. Ahn, K.; Hariki, A.; Lee, K.; Kuneš, J. Antiferromagnetism in RuO2 as d-wave pomeranchuk instability. Phys. Rev. B. 2019, 99, 184432.

23. Hayami, S.; Yanagi, Y.; Kusunose, H. Momentum-dependent spin splitting by collinear antiferromagnetic ordering. J. Phys. Soc. Jpn. 2019, 88, 123702.

24. Yuan, L.; Wang, Z.; Luo, J.; Rashba, E. I.; Zunger, A. Giant momentum-dependent spin splitting in centrosymmetric low-Z antiferromagnets. Phys. Rev. B. 2020, 102, 014422.

25. Sukhachov, P. O.; Hodt, E. W.; Linder, J. Thermoelectric effect in altermagnet-superconductor junctions. Phys. Rev. B. 2024, 110, 094508.

26. Bai, H.; Zhang, Y. C.; Zhou, Y. J.; et al. Efficient spin-to-charge conversion via altermagnetic spin splitting effect in antiferromagnet RuO2. Phys. Rev. Lett. 2023, 130, 216701.

27. Lyu, K.; Li, Y. Orientation-dependent spin-polarization and transport properties in altermagnet based resonant tunneling junctions. Results. Phys. 2024, 59, 107564.

28. Fedchenko, O.; Minár, J.; Akashdeep, A.; et al. Observation of time-reversal symmetry breaking in the band structure of altermagnetic RuO2. Sci. Adv. 2024, 10, eadj4883.

29. Krempaský, J.; Šmejkal, L.; D'Souza, S. W.; et al. Altermagnetic lifting of Kramers spin degeneracy. Nature 2024, 626, 517-22.

30. Fan, Y.; Wang, Q.; Wang, W.; et al. Robust magnetic-field-free perpendicular magnetization switching by manipulating spin polarization direction in RuO2/[Pt/Co/Pt] heterojunctions. ACS. Nano. 2024, 18, 26350-8.

31. Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15-50.

32. Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B. 1996, 54, 11169.

33. Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865-8.

34. Dion, M.; Rydberg, H.; Schröder, E.; Langreth, D. C.; Lundqvist, B. I. Van der Waals density functional for general geometries. Phys. Rev. Lett. 2004, 92, 246401.

35. Pack, J. D.; Monkhorst, H. J. “Special points for Brillouin-zone integrations”-a reply. Phys. Rev. B. 1977, 16, 1748.

36. Heyd, J.; Scuseria, G. E.; Ernzerhof, M. Hybrid functionals based on a screened Coulomb potential. J. Chem. Phys. 2003, 118, 8207-15.

37. Heyd, J.; Scuseria, G. E.; Ernzerhof, M. Erratum: “Hybrid functionals based on a screened Coulomb potential” [J. J. Chem. Phys. 2006, 124, 219906.

38. Vampire Curie temperature simulation tutorial. https://vampire.york.ac.uk/tutorials/simulation/curie-temperature/ (accessed 2025-05-14).

39. Madsen, G. K.; Singh, D. J. BoltzTraP. A code for calculating band-structure dependent quantities. Comput. Phys. Commun. 2006, 175, 67-71.

40. Togo, A.; Chaput, L.; Tanaka, I. Distributions of phonon lifetimes in Brillouin zones. Phys. Rev. B. 2015, 91, 094306.

41. Yu, Y. High storage capacity and small volume change of potassium-intercalation into novel vanadium oxychalcogenide monolayers V2S2O, V2Se2O and V2Te2O: an ab initio DFT investigation. Appl. Surf. Sci. 2021, 546, 149062.

42. Evans, R. F.; Fan, W. J.; Chureemart, P.; Ostler, T. A.; Ellis, M. O.; Chantrell, R. W. Atomistic spin model simulations of magnetic nanomaterials. J. Phys. Condens. Matter. 2014, 26, 103202.

43. Casu, G.; Bosin, A.; Fiorentini, V. Efficient thermoelectricity in Sr2Nb2O7 with energy-dependent relaxation times. Phys. Rev. Materials. 2020, 4, 075404.

44. Marfoua, B.; Hong, J. Graphene induced high thermoelectric performance in ZnO/graphene heterostructure. Adv. Mater. Interfaces. 2023, 10, 2202387.

45. Ullah, A.; Bezzerga, D.; Hong, J. Giant spin seebeck effect with highly polarized spin current generation and piezoelectricity in flexible V2SeTeO altermagnet at room temperature. Mater. Today. Phys. 2024, 47, 101539.

46. Jaworski, C. M.; Yang, J.; Mack, S.; Awschalom, D. D.; Heremans, J. P.; Myers, R. C. Observation of the spin-Seebeck effect in a ferromagnetic semiconductor. Nat. Mater. 2010, 9, 898-903.

47. Reitz, D.; Li, J.; Yuan, W.; Shi, J.; Tserkovnyak, Y. Spin Seebeck effect near the antiferromagnetic spin-flop transition. Phys. Rev. B. 2020, 102, 020408.

48. Wadhwa, P.; Bosin, A.; Filippetti, A. Giant spin-dependent Seebeck effect from fully spin-polarized carriers in n-doped EuTiO3: a prototype material for spin-caloritronic applications. J. Mater. Chem. A. 2023, 11, 6842-53.

49. Priyanka D, Venkatesh G, Srinivasan M, Palanisamy G, Ramasamy P. Half metallic heusler alloys XMnGe (X = Ti, Zr, Hf) for spin flip and thermoelectric device application - material computations. Mater. Sci. Semicond. Process. 2023, 159, 107367.

Energy Materials
ISSN 2770-5900 (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/